福田の数学〜東京理科大学2023年創域理工学部第1問(3)〜偶奇で定義の異なる漸化式 - 質問解決D.B.(データベース)

福田の数学〜東京理科大学2023年創域理工学部第1問(3)〜偶奇で定義の異なる漸化式

問題文全文(内容文):
$\Large\boxed{1}$ (3)数列$\left\{a_n\right\}$は、$a_1$=$\displaystyle\frac{7}{5}$, $n$が偶数の時は$a_{n+1}$=$\displaystyle\frac{1+a_n}{2}$, $n$が奇数の時は$a_{n+1}$=$\displaystyle\frac{2+a_n}{2}$を満たすとする。このとき、$a_2$=$\frac{\boxed{\ \ ヘホ\ \ }}{\boxed{\ \ マミ\ \ }}$, $a_3$=$\frac{\boxed{\ \ ムメ\ \ }}{\boxed{\ \ モヤ\ \ }}$である。
さらに、自然数$k$に対して$a_{2k+1}$=$\boxed{\ \ ユ\ \ }$+$\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ラ\ \ }}a_{2k-1}$となる。これを
$a_{2k+1}$-$\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }}$=$\frac{\boxed{\ \ レ\ \ }}{\boxed{\ \ ロ\ \ }}\left( a_{2k-1}-\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }} \right)$
と変形することにより、
$a_{2k-1}$=$\frac{1}{\boxed{\ \ ワヲ\ \ }}\left( \frac{\boxed{\ \ レ\ \ }}{\boxed{\ \ ロ\ \ }} \right)^{k-1}$+$\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }}$
が得られる。また、
$a_{2k}$=$\frac{1}{\boxed{\ \ ンあ\ \ }}\left( \frac{\boxed{\ \ い\ \ }}{\boxed{\ \ う\ \ }} \right)^{k-1}$+$\frac{\boxed{\ \ え\ \ }}{\boxed{\ \ お\ \ }}$
も得られる。
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)数列$\left\{a_n\right\}$は、$a_1$=$\displaystyle\frac{7}{5}$, $n$が偶数の時は$a_{n+1}$=$\displaystyle\frac{1+a_n}{2}$, $n$が奇数の時は$a_{n+1}$=$\displaystyle\frac{2+a_n}{2}$を満たすとする。このとき、$a_2$=$\frac{\boxed{\ \ ヘホ\ \ }}{\boxed{\ \ マミ\ \ }}$, $a_3$=$\frac{\boxed{\ \ ムメ\ \ }}{\boxed{\ \ モヤ\ \ }}$である。
さらに、自然数$k$に対して$a_{2k+1}$=$\boxed{\ \ ユ\ \ }$+$\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ラ\ \ }}a_{2k-1}$となる。これを
$a_{2k+1}$-$\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }}$=$\frac{\boxed{\ \ レ\ \ }}{\boxed{\ \ ロ\ \ }}\left( a_{2k-1}-\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }} \right)$
と変形することにより、
$a_{2k-1}$=$\frac{1}{\boxed{\ \ ワヲ\ \ }}\left( \frac{\boxed{\ \ レ\ \ }}{\boxed{\ \ ロ\ \ }} \right)^{k-1}$+$\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }}$
が得られる。また、
$a_{2k}$=$\frac{1}{\boxed{\ \ ンあ\ \ }}\left( \frac{\boxed{\ \ い\ \ }}{\boxed{\ \ う\ \ }} \right)^{k-1}$+$\frac{\boxed{\ \ え\ \ }}{\boxed{\ \ お\ \ }}$
も得られる。
投稿日:2023.10.10

<関連動画>

福田の1.5倍速演習〜合格する重要問題003〜北海道大学2015年文系数学第4問〜隣り合う順列、隣り合わない順列

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
ジョーカーを除く1組52枚のトランプのカードを1列に並べる思考を考える。
(1)番号7のカードが4枚連続して並ぶ確率を求めよ。
(2)番号7のカードが2枚ずつ隣り合い、4枚連続しては並ばない確率を求めよ。

8人の人が一列に並ぶとき、
(1)A,B,Cの3人が連続して並ぶ場合の数を求めよ。
(2)A,B,Cの3人が隣りあわないように並ぶ場合の数を求めよ。

2015北海道大学文系過去問
この動画を見る 

【爆笑】足し算が難しすぎて頭爆発しました

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
難しい足し算の紹介解説動画です
この動画を見る 

金沢大(医) 漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#金沢大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
金沢大学過去問題
$a_1=36$ (nは自然数)
$a_{n+1}=2a_n+2^{n+3}n-17・2^{n+1}$
(1)$\{ a_n \} $の一般項を求めよ。
(2)$a_n$>$a_{n+1}$となるaの範囲及び$a_n$が最小となるnの値を求めよ。
(3)$S_n=a_1+a_2+a_3+ \cdots +a_n$で$S_n$が最小となるnの値をすべて求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第2問(2)〜漸化式と和に関する不等式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ (2)a_1=4,\ \ \ 4a_{n+1}=2a_n+3(n=1,2,3,\ldots)で与えられる\\
数列\left\{a_n\right\}の一般項はa_n=\boxed{\ \ ア\ \ }である。また\sum_{n=1}^la_n \geqq 20\\
を満たす最小の自然数lは\boxed{\ \ イ\ \ }\ である。\hspace{75pt}
\end{eqnarray}

2022慶應義塾大学看護医療学科過去問
この動画を見る 

福田の一夜漬け数学〜確率漸化式(1)〜京都大学の問題(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $A,B,C$の3人が色のついた札を1枚ずつ持っている。初めに$A,B,C$
の持っている札の色はそれぞれ赤、白、青である。$A$がサイコロを
投げて、3の倍数の目が出たら$A$は$B$と持っている札を交換し、
その他の目が出たら$A$は$C$と札を交換する。この試行を$n$回繰り返し
た後に赤い札を$A,B,C$が持っている確率をそれぞれ$a_n,b_n,c_n$とする。

(1)$n \geqq 2$のとき、$a_n,b_n,c_n$を$a_{n-1},b_{n-1},b_{n-1}$で表せ。
(2)$a_n$を求めよ。
この動画を見る 
PAGE TOP