北海道大 式の最大値 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

北海道大 式の最大値 Mathematics Japanese university entrance exam

問題文全文(内容文):
北海道大学過去問題
x,y実数
$x^2+y^2=1$を満たす
$\sqrt3x^2+2xy-\sqrt3y^2$の最大値と、そのときのx,yの値
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
北海道大学過去問題
x,y実数
$x^2+y^2=1$を満たす
$\sqrt3x^2+2xy-\sqrt3y^2$の最大値と、そのときのx,yの値
投稿日:2018.09.27

<関連動画>

【数Ⅱ】三角関数と方程式 2 sinとcosの1次方程式【合成して三角関数の個数を減らす】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)\sin2x=\cos x$$(0 \leqq x \lt 2\pi)$
$(2)\sin x+\sqrt3 \cos x=1$$(0 \leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+3=0$$(0\leqq x \lt 2\pi)$
$(4)\sin^2x+\sin x cos x-1=0$$(0\leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x\cos x-1=0$$(0 \leqq x \lt 2\pi)$
この動画を見る 

【高校数学】 数Ⅱ-106 三角関数を含む関数の最大・最小②

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数の最大値と最小値、およびそのときの$\theta$の値を求めよう。

①$y=\sin^2 \theta +\cos \theta+1 (0\leqq \theta\lt2π)$

②$y=\cos^2 \theta +\sin \theta-1 (-\displaystyle \frac{π}{2}\leqq \theta\leqq\displaystyle \frac{π}{2})$
この動画を見る 

【数Ⅱ】【三角関数】三角関数の合成1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0$\leqq$x$\lt$2πのとき、次の方程式を解け。
(1) $sinx+\sqrt{3}cosx=-1$
(2) $2(sinx-cosx)=\sqrt{6}$
(3) $\sqrt{3}sin2x-cos2x=-\sqrt{2}$
この動画を見る 

【数Ⅱ】三角関数:加法定理の利用

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sinx - \siny =\dfrac{1}{2} , \cosx - \cosy =\dfrac{1}{3}$ , のとき、$\cos (x-y)$ の値を求めなさい。
この動画を見る 

福田のわかった数学〜高校2年生080〜三角関数(19)2直線のなす角(3)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(19) なす角(3)
2点A(0,2), B(0,8)がある。点P(a,0) $(a \gt 0)$について$\angle APB$が最大となるaは?
この動画を見る 
PAGE TOP