【高校数学】 数Ⅱ-46 高次方程式① - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-46 高次方程式①

問題文全文(内容文):
◎次の方程式を解こう。

①$(x-2)(2x+1)=0$

②$(x+4)(x-3)(3x-2)=0$

③$(x^2-1)(x^2-16)=0$

④$x^4=81$
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の方程式を解こう。

①$(x-2)(2x+1)=0$

②$(x+4)(x-3)(3x-2)=0$

③$(x^2-1)(x^2-16)=0$

④$x^4=81$
投稿日:2015.06.06

<関連動画>

慶應義塾大 指数方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8^x-3a4^x+4a=0(a \neq 0)$の異なる実数解の個数を求めよ

出典:1997年慶應義塾大学 過去問
この動画を見る 

できるように作られた因数分解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 36x^4+24x^3+67x^2+24x+36$
これを因数分解せよ.
この動画を見る 

名古屋市立大 3次方程式が相違3実数解を持つ条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-kx+k=0$が相異なる3つの実数解をもつ$k$の範囲を求めよ

出典:名古屋市立大学 過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(2)〜解の差が1の2次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)xの関数$f(x)=x^2+ax+b$がある。方程式$f(x)=0$の2つの実数解の差が
1であり、xの値が2から5まで変わるときのf(x)の平均変化率が$\frac{13}{2}$であるとき、
aの値は$\boxed{\ \ イ\ \ }$、bの値は$\boxed{\ \ ウ\ \ }$である。

2021慶應義塾大学薬学部過去問
この動画を見る 

福田のおもしろ数学408〜変数が素数である連立方程式

アイキャッチ画像
単元: #連立方程式#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\begin{eqnarray}
\left\{
\begin{array}{l}
pq=r+1 \\
2(p^2+q^2)=r^2+1
\end{array}
\right.
\end{eqnarray}$

を満たす素数$p,q,r$を求めて下さい。
この動画を見る 
PAGE TOP