一橋大 整数問題 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

一橋大 整数問題 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
2005一橋大学過去問題
(1)P,2P+1,4P+1がいずれも素数となるようなPをすべて求めよ。
(2)q,2q+1,4q-1,6q-1,8q+1がいずれも素数となるようなqをすべて求めよ。
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2005一橋大学過去問題
(1)P,2P+1,4P+1がいずれも素数となるようなPをすべて求めよ。
(2)q,2q+1,4q-1,6q-1,8q+1がいずれも素数となるようなqをすべて求めよ。
投稿日:2018.05.11

<関連動画>

高1数学の展開

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a+b+c=1$
$a^2+b^2+c^2=13$
$(a-b)^2 + (b-c)^2 + (c-a)^2 = ?$

共通テスト
この動画を見る 

ただの計算問題

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt{101^2+101^2・102^2+102^2}$
これを計算せよ.
この動画を見る 

円周角 中央大杉並 推薦 2022入試問題解説27問目

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle MBN = ?$
*図は動画内参照

2022中央大学杉並高等学校
この動画を見る 

福田の1.5倍速演習〜合格する重要問題031〜千葉大学2016年度理系第2問〜格子点の個数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に5点O$(0,0), A(5,0), B(0,11), P(m,0), Q(0,n)$をとる。
ただし、mとnは$1 \leqq m \leqq 5,1 \leqq n \leqq 11$を満たす整数とする。
(1)三角形OABの内部に含まれる格子点の個数を求めよ。ただし、格子点とは
x座標とy座標が共に整数である点のことであり、内部には辺上の点は含まれない。

(2)三角形OPQの内部に含まれる格子点の個数が三角形OABの内部に含まれる
格子点の個数の半分になるような組(m,n)をすべて求めよ。

2016千葉大学理系過去問
この動画を見る 

数1の基本問題

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^x+(2a^2-a+6)・2^x+2a^2+a-6=0$が実数解をもつaの範囲を求めよ.
この動画を見る 
PAGE TOP