福田の数学〜余りにも長い文章題の攻略ポイントは〜慶應義塾大学2023年総合政策学部第6問〜長文問題と1次不等式 - 質問解決D.B.(データベース)

福田の数学〜余りにも長い文章題の攻略ポイントは〜慶應義塾大学2023年総合政策学部第6問〜長文問題と1次不等式

問題文全文(内容文):
${\large\boxed{6}}$まず、1期目の交渉案の分配値が$\textrm{A}$と$\textrm{B}$共に紛争で期待できる価値以上であれば、交渉案を受け入れ紛争を起こさず、期待できる価値未満であれば紛争を起こすものとすると、$\textrm{A}$は自らの分配値が$\displaystyle\frac{\boxed{ア}}{35}$以上であれば交渉案を受け入れ、$\textrm{B}$は$\textrm{A}$の分配値が1以下であれば交渉権を受け入れる。また紛争が起きた場合には、2期目と3期目に$\textrm{A}$と$\textrm{B}$が期待できる価値は1期目に期待できる価値と同一とする。\begin{eqnarray}\end{eqnarray}

もし1期目に交渉が妥結した場合は、2期目に改めて交渉が行われ、$\textrm{A}$の分配値が$\displaystyle\frac{\boxed{イ}}{35}$以上で$\displaystyle\frac{\boxed{ウ}}{35}$以下ならば、$\textrm{A}$と$\textrm{B}$ともに紛争で期待できる価値以上なので$\textrm{A}$と$\textrm{B}$ともに交渉案を受け入れ紛争を起こさず、そうでない場合には紛争を起こし、その場合には3期目に$\textrm{A}$と$\textrm{B}$が期待できる価値は2期目に期待できる価値と同一とする。\begin{eqnarray}\end{eqnarray}

もし2期目に交渉が妥結した場合は、3期目に改めて交渉が行われ、$\textrm{A}$の分配値が$\displaystyle\frac{\boxed{エ}}{35}$以上で$\displaystyle\frac{\boxed{オ}}{35}$以下ならば、$\textrm{A}$と$\textrm{B}$ともに紛争で期待できる価値以上なの$\textrm{A}$と$\textrm{B}$共に交渉案を受け入れ紛争を起こさず、\begin{eqnarray}\end{eqnarray}

以下では、各期において交渉が妥結した場合には、$\textrm{A}$の分配値は$\textrm{A}$と$\textrm{B}$共に受け入れられる$\textrm{A}$の分配値の上限値と下限値の中間に定まるものと仮定しよう。すると、$\textrm{A}$が得られると期待できる価値の3期分の合計は、3期すべてで交渉が妥協した場合$\displaystyle\frac{\boxed{カ}}{35}$となり、1期目に紛争が起きた場合$\displaystyle\frac{\boxed{キ}}{35}$であり、2期目に紛争が起きた場合$\displaystyle\frac{\boxed{ク}}{35}$であり、3期目に紛争が起きた場合$\displaystyle\frac{\boxed{ケ}}{35}$となる。\begin{eqnarray}\end{eqnarray}

また、紛争コストが$\textrm{A}$と$\textrm{B}$共に$\displaystyle\frac{2}{5}$に増加した場合、$\textrm{A}$が得られると期待できる価値の3期分の合計は、3期すべてで交渉が妥結した場合$\displaystyle\frac{\boxed{コ}}{70}$となり、1期目に紛争が起きた場合、$\displaystyle\frac{\boxed{サ}}{70}$であり、2期目に紛争が起きた場合$\displaystyle\frac{\boxed{シ}}{70}$となる。さらに、紛争コストが$\textrm{A}$と$\textrm{B}$共に$\displaystyle\frac{2}{5}$に増加し、問題となっている土地の価値が2期と3期で$\textrm{A}$と$\textrm{A}$共に2に増加したとすると、$\textrm{A}$が得られると期待できる価値の3期分の合計は、3期すべてで交渉が妥結した場合$\displaystyle\frac{\boxed{ス}}{70}$となり、1期目に紛争が起きた場合$\displaystyle\frac{\boxed{セ}}{70}$であり、2期目に紛争が起きた場合$\displaystyle\frac{\boxed{ソ}}{70}$となる。

2023慶應義塾大学総合政策学部過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{6}}$まず、1期目の交渉案の分配値が$\textrm{A}$と$\textrm{B}$共に紛争で期待できる価値以上であれば、交渉案を受け入れ紛争を起こさず、期待できる価値未満であれば紛争を起こすものとすると、$\textrm{A}$は自らの分配値が$\displaystyle\frac{\boxed{ア}}{35}$以上であれば交渉案を受け入れ、$\textrm{B}$は$\textrm{A}$の分配値が1以下であれば交渉権を受け入れる。また紛争が起きた場合には、2期目と3期目に$\textrm{A}$と$\textrm{B}$が期待できる価値は1期目に期待できる価値と同一とする。\begin{eqnarray}\end{eqnarray}

もし1期目に交渉が妥結した場合は、2期目に改めて交渉が行われ、$\textrm{A}$の分配値が$\displaystyle\frac{\boxed{イ}}{35}$以上で$\displaystyle\frac{\boxed{ウ}}{35}$以下ならば、$\textrm{A}$と$\textrm{B}$ともに紛争で期待できる価値以上なので$\textrm{A}$と$\textrm{B}$ともに交渉案を受け入れ紛争を起こさず、そうでない場合には紛争を起こし、その場合には3期目に$\textrm{A}$と$\textrm{B}$が期待できる価値は2期目に期待できる価値と同一とする。\begin{eqnarray}\end{eqnarray}

もし2期目に交渉が妥結した場合は、3期目に改めて交渉が行われ、$\textrm{A}$の分配値が$\displaystyle\frac{\boxed{エ}}{35}$以上で$\displaystyle\frac{\boxed{オ}}{35}$以下ならば、$\textrm{A}$と$\textrm{B}$ともに紛争で期待できる価値以上なの$\textrm{A}$と$\textrm{B}$共に交渉案を受け入れ紛争を起こさず、\begin{eqnarray}\end{eqnarray}

以下では、各期において交渉が妥結した場合には、$\textrm{A}$の分配値は$\textrm{A}$と$\textrm{B}$共に受け入れられる$\textrm{A}$の分配値の上限値と下限値の中間に定まるものと仮定しよう。すると、$\textrm{A}$が得られると期待できる価値の3期分の合計は、3期すべてで交渉が妥協した場合$\displaystyle\frac{\boxed{カ}}{35}$となり、1期目に紛争が起きた場合$\displaystyle\frac{\boxed{キ}}{35}$であり、2期目に紛争が起きた場合$\displaystyle\frac{\boxed{ク}}{35}$であり、3期目に紛争が起きた場合$\displaystyle\frac{\boxed{ケ}}{35}$となる。\begin{eqnarray}\end{eqnarray}

また、紛争コストが$\textrm{A}$と$\textrm{B}$共に$\displaystyle\frac{2}{5}$に増加した場合、$\textrm{A}$が得られると期待できる価値の3期分の合計は、3期すべてで交渉が妥結した場合$\displaystyle\frac{\boxed{コ}}{70}$となり、1期目に紛争が起きた場合、$\displaystyle\frac{\boxed{サ}}{70}$であり、2期目に紛争が起きた場合$\displaystyle\frac{\boxed{シ}}{70}$となる。さらに、紛争コストが$\textrm{A}$と$\textrm{B}$共に$\displaystyle\frac{2}{5}$に増加し、問題となっている土地の価値が2期と3期で$\textrm{A}$と$\textrm{A}$共に2に増加したとすると、$\textrm{A}$が得られると期待できる価値の3期分の合計は、3期すべてで交渉が妥結した場合$\displaystyle\frac{\boxed{ス}}{70}$となり、1期目に紛争が起きた場合$\displaystyle\frac{\boxed{セ}}{70}$であり、2期目に紛争が起きた場合$\displaystyle\frac{\boxed{ソ}}{70}$となる。

2023慶應義塾大学総合政策学部過去問
投稿日:2023.12.07

<関連動画>

一橋大 漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
同時に1個ずつ取り出して入れかえる.
n回後にAがA,Bである確率を求めよ.

2022一橋大過去問
この動画を見る 

大学入試問題#694「The king property」 東京女子医科大学(2008) キングプロパティ

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京女子医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{|x|}{1+e^x} dx$

出典:2008年東京女子医科大学 入試問題
この動画を見る 

福田の数学〜中央大学2024経済学部第1問(2)〜集合の要素の個数

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$1$から$1000$までの整数全体の集合を$U$とする。$U$の部分集合$A,B$をそれぞれ$A=\{x|xは5の倍数\},B=\{x|xは7の倍数\}$とするとき、$\overline A \cap \overline B$の要素の個数$n(\overline A \cap \overline B)$を求めよ。
この動画を見る 

早稲田 群数列の和 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
k自然数 $a_k$は$\sqrt k$にもっとも近い整数
(例)$a_5=2,a_8=3,a_{20}=4$
(1)$\displaystyle\sum_{k=1}^{12}a_k=a_1+a_2+\cdots+a_{12}$
(2)$\displaystyle\sum_{k=1}^{1998}a_k=a_1+a_2+\cdots+a_{1998}$
この動画を見る 

#宮崎大学(2015) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} x^5e^{x^3} dx$

出典:2015年宮崎大学
この動画を見る 
PAGE TOP