福田の数学〜慶應義塾大学2024年経済学部第4問〜正四面体の位置ベクトルと面積体積 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年経済学部第4問〜正四面体の位置ベクトルと面積体積

問題文全文(内容文):
$\Large{\boxed{4}}$ $p$,$q$を正の実数とし、Oを原点とする座標空間内に3点A(3,$-\sqrt 3$,0),B(3,$\sqrt 3$,0),C($p$,0,$q$)をとる。ただし、四面体OABCは1辺の長さが$2\sqrt 3$の正四面体であるとする。
(1)$p$および$q$の値を求めよ。
以下、点$\displaystyle\left(\frac{3}{2},0,\frac{q}{2}\right)$に関してO,A,B,Cと対称な点を、それぞれD,E,F,Gとする。
(2)直線DGと平面ABCとの交点Hの座標を求めよ。
(3)直線CBと平面DEGとの交点をI、直線CAと平面DFGとの交点をJとする。
四角形CJHIの面積$S$と四角錐G-CJHIの体積$V$を、それぞれ求めよ。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $p$,$q$を正の実数とし、Oを原点とする座標空間内に3点A(3,$-\sqrt 3$,0),B(3,$\sqrt 3$,0),C($p$,0,$q$)をとる。ただし、四面体OABCは1辺の長さが$2\sqrt 3$の正四面体であるとする。
(1)$p$および$q$の値を求めよ。
以下、点$\displaystyle\left(\frac{3}{2},0,\frac{q}{2}\right)$に関してO,A,B,Cと対称な点を、それぞれD,E,F,Gとする。
(2)直線DGと平面ABCとの交点Hの座標を求めよ。
(3)直線CBと平面DEGとの交点をI、直線CAと平面DFGとの交点をJとする。
四角形CJHIの面積$S$と四角錐G-CJHIの体積$V$を、それぞれ求めよ。
投稿日:2024.07.01

<関連動画>

これ知ってる?

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
全方向美少女が全方向でない事に関して解説します。
この動画を見る 

数学「大学入試良問集」【14−14四面体の体積•平面と垂直な直線】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
空間内に4点$A(0,0,0),B(2,1,1),C(-2,2,-4),D(1,2,-4)$がある。
(1)
$\angle BAC=\theta$とおくとき、$\cos\theta$の値と$\triangle ABC$の面積を求めよ。

(2)
$\overrightarrow{ AB }$と$\overrightarrow{ AC }$の両方に垂直なベクトルを1つ求めよ。

(3)
点$D$から、3点$A,B,C$を含む平面に垂直な直線を引き、その交点を$E$とするとき、線分$DE$の長さを求めよ。

(4)
四面体$ABCD$の体積を求めよ。
この動画を見る 

【空間ベクトル】直線の方程式 発展分野

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【空間ベクトル】直線の方程式 発展分野解説動画です
-----------------
点$A(3,2,1)$を通り、$\vec{ d }=(1,2,4)$に平行な直線の方程式は?
この動画を見る 

【数C】空間ベクトル:軸/平面に関して対称な点の考え方

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
直方体OABC-DEFGについて、次の座標を求めよう。
(1)点Fからxy平面に下した垂線の足B
(2)点Fとyz平面に関して対称な点P
(3)点Fとy軸に関して対応な点Q
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第3問〜対称点とベクトルの絶対値の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 空間座標における2点A(2,-3,-1)とB(3,0,1)を通る直線を$l_1$とし、直線$l_1$に関して点C(1,5,-2)と対称な点をDとすると、Dの座標は($\boxed{\ \ ク\ \ }$, $\boxed{\ \ ケ\ \ }$, $\boxed{\ \ コ\ \ }$)である。また、点Dを通り$l_1$と平行な直線を$l_2$とし、点Pが直線$l_2$上を、点Qが$xy$平面上の直線$y$=$-x$+4 上をそれぞれ自由に動くとき、$|\overrightarrow{PQ}|^2$の最小値は$\boxed{\ \ サ\ \ }$である。
この動画を見る 
PAGE TOP