福田の数学〜上智大学2021年理工学部第3問〜複素数平面と図形 - 質問解決D.B.(データベース)

福田の数学〜上智大学2021年理工学部第3問〜複素数平面と図形

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} iを虚数単位とする。複素数zの絶対値を|z|と表す。\\
w=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5} とし、\alpha=w+w^4 とする。\\
\\
(1)\alpha^2=\boxed{\ \ お\ \ }\ である。これより、\alpha=\frac{\boxed{\ \ ソ\ \ }+\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}である。\\
(2)複素数平面上の2点\frac{i}{2},\ -1間の距離は\ \boxed{\ \ か\ \ }\ である。\\
(3)複素数平面上の2点w^2,\ -1間の距離は\ \boxed{\ \ き\ \ }\ である。\\
(4)\frac{w^2+1}{w+1}=r(\cos\theta+i\sin\theta) (ただし、r \gt 0,\ 0 \leqq \theta \lt 2\pi)\\
とおくとき、r=\boxed{\ \ く\ \ }\ であり、\theta=\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}\pi\ である。\\
(5)複素数平面上で、-1を中心都市w^2を通る円上をzが動くとする。\\
x=\frac{1}{z}とするとき、xは|1+x|=\boxed{\ \ け\ \ }|x| を満たし、\boxed{\ \ こ\ \ }を\\
中心とする半径\boxed{\ \ さ\ \ }の円を描く。\\
\\
\boxed{\ \ お\ \ }~\ \boxed{\ \ さ\ \ }の選択肢\\
(\textrm{a})1  (\textrm{b})2  (\textrm{c})\alpha  (\textrm{d})2\alpha\\
(\textrm{e})\frac{\alpha}{2}+1  (\textrm{f})\frac{\alpha}{2}-1  (\textrm{g})-\frac{\alpha}{2}+1  (\textrm{h})-\frac{\alpha}{2}-1\\
(\textrm{i})\alpha+1  (\textrm{j})\alpha-1  (\textrm{k})-\alpha+1  (\textrm{l})-\alpha-1\\
(\textrm{m})\alpha+\frac{1}{2}  (\textrm{n})\alpha-\frac{1}{2}  (\textrm{o})-\alpha+\frac{1}{2}  (\textrm{p})-\alpha-\frac{1}{2}  
\end{eqnarray}

2021上智大学理工学部過去問
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} iを虚数単位とする。複素数zの絶対値を|z|と表す。\\
w=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5} とし、\alpha=w+w^4 とする。\\
\\
(1)\alpha^2=\boxed{\ \ お\ \ }\ である。これより、\alpha=\frac{\boxed{\ \ ソ\ \ }+\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}である。\\
(2)複素数平面上の2点\frac{i}{2},\ -1間の距離は\ \boxed{\ \ か\ \ }\ である。\\
(3)複素数平面上の2点w^2,\ -1間の距離は\ \boxed{\ \ き\ \ }\ である。\\
(4)\frac{w^2+1}{w+1}=r(\cos\theta+i\sin\theta) (ただし、r \gt 0,\ 0 \leqq \theta \lt 2\pi)\\
とおくとき、r=\boxed{\ \ く\ \ }\ であり、\theta=\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}\pi\ である。\\
(5)複素数平面上で、-1を中心都市w^2を通る円上をzが動くとする。\\
x=\frac{1}{z}とするとき、xは|1+x|=\boxed{\ \ け\ \ }|x| を満たし、\boxed{\ \ こ\ \ }を\\
中心とする半径\boxed{\ \ さ\ \ }の円を描く。\\
\\
\boxed{\ \ お\ \ }~\ \boxed{\ \ さ\ \ }の選択肢\\
(\textrm{a})1  (\textrm{b})2  (\textrm{c})\alpha  (\textrm{d})2\alpha\\
(\textrm{e})\frac{\alpha}{2}+1  (\textrm{f})\frac{\alpha}{2}-1  (\textrm{g})-\frac{\alpha}{2}+1  (\textrm{h})-\frac{\alpha}{2}-1\\
(\textrm{i})\alpha+1  (\textrm{j})\alpha-1  (\textrm{k})-\alpha+1  (\textrm{l})-\alpha-1\\
(\textrm{m})\alpha+\frac{1}{2}  (\textrm{n})\alpha-\frac{1}{2}  (\textrm{o})-\alpha+\frac{1}{2}  (\textrm{p})-\alpha-\frac{1}{2}  
\end{eqnarray}

2021上智大学理工学部過去問
投稿日:2021.08.27

<関連動画>

【数ⅢC】 複素数平面の基本⑫半直線のなす角を考える

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面の基本⑫半直線のなす角を考えていきます.
この動画を見る 

虚数の3乗根 島根大

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^3=i$

島根大過去問
この動画を見る 

【数ⅢC】 複素数平面の基本⑪図形の方程式を条件から考える

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点zが原点Oを中心とする半径2の円上を動くとき、$w=\dfrac{z-2}{z+1}$はどのような図形を描くか
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第4問PART1〜円に内接する円の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#複素数平面#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#微分とその応用#複素数平面#図形への応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面において原点Oを中心とする半径1の円を$C_1$とし、$C_1$の内部にある第1象限の点Pの極座標を(r, θ)とする。さらに点Pを中心とする円$C_2$が$C_1$上の点Qにおいて$C_1$に内接し、x軸上の点Rにおいてx軸に接しているとする。
また、極座標が(1, π)である$C_1$上の点をAとし、直線AQのy切片をtとする。
(1)rをθの式で表すとr=$\boxed{\ \ あ\ \ }$となり、tの式で表すとr=$\boxed{\ \ い\ \ }$となる。
(2)円$C_2$と同じ半径をもち、x軸に関して円$C_2$と対称な位置にある円$C'_2$の中心P'とする。三角形POP'の面積はθ=$\boxed{\ \ う\ \ }$のとき最大値$\boxed{\ \ え\ \ }$をとる。θ=$\boxed{\ \ う\ \ }$は条件t=$\boxed{\ \ お\ \ }$と同値である。
(3)円$C_1$に内接し、円$C_2$と$C'_2$の両方に外接する円のうち大きい方を$C_3$とする。円$C_3$の半径bをtの式で表すとb=$\boxed{\ \ か\ \ }$となる。
(4)3つの円$C_2$, $C'_2$, $C_3$の周の長さの和はθ=$\boxed{\ \ き\ \ }$の最大値$\boxed{\ \ く\ \ }$をとる。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

一橋大 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(z)=z^{2n}+z^n+1$を

$z^2+z+1$で割ったあまり
$z^2-z+1$で割ったあまり

を求めよ.$n$は自然数である.

一橋大学過去問
この動画を見る 
PAGE TOP