問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} iを虚数単位とする。複素数zの絶対値を|z|と表す。\\
w=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5} とし、\alpha=w+w^4 とする。\\
\\
(1)\alpha^2=\boxed{\ \ お\ \ }\ である。これより、\alpha=\frac{\boxed{\ \ ソ\ \ }+\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}である。\\
(2)複素数平面上の2点\frac{i}{2},\ -1間の距離は\ \boxed{\ \ か\ \ }\ である。\\
(3)複素数平面上の2点w^2,\ -1間の距離は\ \boxed{\ \ き\ \ }\ である。\\
(4)\frac{w^2+1}{w+1}=r(\cos\theta+i\sin\theta) (ただし、r \gt 0,\ 0 \leqq \theta \lt 2\pi)\\
とおくとき、r=\boxed{\ \ く\ \ }\ であり、\theta=\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}\pi\ である。\\
(5)複素数平面上で、-1を中心都市w^2を通る円上をzが動くとする。\\
x=\frac{1}{z}とするとき、xは|1+x|=\boxed{\ \ け\ \ }|x| を満たし、\boxed{\ \ こ\ \ }を\\
中心とする半径\boxed{\ \ さ\ \ }の円を描く。\\
\\
\boxed{\ \ お\ \ }~\ \boxed{\ \ さ\ \ }の選択肢\\
(\textrm{a})1 (\textrm{b})2 (\textrm{c})\alpha (\textrm{d})2\alpha\\
(\textrm{e})\frac{\alpha}{2}+1 (\textrm{f})\frac{\alpha}{2}-1 (\textrm{g})-\frac{\alpha}{2}+1 (\textrm{h})-\frac{\alpha}{2}-1\\
(\textrm{i})\alpha+1 (\textrm{j})\alpha-1 (\textrm{k})-\alpha+1 (\textrm{l})-\alpha-1\\
(\textrm{m})\alpha+\frac{1}{2} (\textrm{n})\alpha-\frac{1}{2} (\textrm{o})-\alpha+\frac{1}{2} (\textrm{p})-\alpha-\frac{1}{2}
\end{eqnarray}
2021上智大学理工学部過去問
\begin{eqnarray}
{\Large\boxed{3}} iを虚数単位とする。複素数zの絶対値を|z|と表す。\\
w=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5} とし、\alpha=w+w^4 とする。\\
\\
(1)\alpha^2=\boxed{\ \ お\ \ }\ である。これより、\alpha=\frac{\boxed{\ \ ソ\ \ }+\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}である。\\
(2)複素数平面上の2点\frac{i}{2},\ -1間の距離は\ \boxed{\ \ か\ \ }\ である。\\
(3)複素数平面上の2点w^2,\ -1間の距離は\ \boxed{\ \ き\ \ }\ である。\\
(4)\frac{w^2+1}{w+1}=r(\cos\theta+i\sin\theta) (ただし、r \gt 0,\ 0 \leqq \theta \lt 2\pi)\\
とおくとき、r=\boxed{\ \ く\ \ }\ であり、\theta=\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}\pi\ である。\\
(5)複素数平面上で、-1を中心都市w^2を通る円上をzが動くとする。\\
x=\frac{1}{z}とするとき、xは|1+x|=\boxed{\ \ け\ \ }|x| を満たし、\boxed{\ \ こ\ \ }を\\
中心とする半径\boxed{\ \ さ\ \ }の円を描く。\\
\\
\boxed{\ \ お\ \ }~\ \boxed{\ \ さ\ \ }の選択肢\\
(\textrm{a})1 (\textrm{b})2 (\textrm{c})\alpha (\textrm{d})2\alpha\\
(\textrm{e})\frac{\alpha}{2}+1 (\textrm{f})\frac{\alpha}{2}-1 (\textrm{g})-\frac{\alpha}{2}+1 (\textrm{h})-\frac{\alpha}{2}-1\\
(\textrm{i})\alpha+1 (\textrm{j})\alpha-1 (\textrm{k})-\alpha+1 (\textrm{l})-\alpha-1\\
(\textrm{m})\alpha+\frac{1}{2} (\textrm{n})\alpha-\frac{1}{2} (\textrm{o})-\alpha+\frac{1}{2} (\textrm{p})-\alpha-\frac{1}{2}
\end{eqnarray}
2021上智大学理工学部過去問
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} iを虚数単位とする。複素数zの絶対値を|z|と表す。\\
w=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5} とし、\alpha=w+w^4 とする。\\
\\
(1)\alpha^2=\boxed{\ \ お\ \ }\ である。これより、\alpha=\frac{\boxed{\ \ ソ\ \ }+\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}である。\\
(2)複素数平面上の2点\frac{i}{2},\ -1間の距離は\ \boxed{\ \ か\ \ }\ である。\\
(3)複素数平面上の2点w^2,\ -1間の距離は\ \boxed{\ \ き\ \ }\ である。\\
(4)\frac{w^2+1}{w+1}=r(\cos\theta+i\sin\theta) (ただし、r \gt 0,\ 0 \leqq \theta \lt 2\pi)\\
とおくとき、r=\boxed{\ \ く\ \ }\ であり、\theta=\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}\pi\ である。\\
(5)複素数平面上で、-1を中心都市w^2を通る円上をzが動くとする。\\
x=\frac{1}{z}とするとき、xは|1+x|=\boxed{\ \ け\ \ }|x| を満たし、\boxed{\ \ こ\ \ }を\\
中心とする半径\boxed{\ \ さ\ \ }の円を描く。\\
\\
\boxed{\ \ お\ \ }~\ \boxed{\ \ さ\ \ }の選択肢\\
(\textrm{a})1 (\textrm{b})2 (\textrm{c})\alpha (\textrm{d})2\alpha\\
(\textrm{e})\frac{\alpha}{2}+1 (\textrm{f})\frac{\alpha}{2}-1 (\textrm{g})-\frac{\alpha}{2}+1 (\textrm{h})-\frac{\alpha}{2}-1\\
(\textrm{i})\alpha+1 (\textrm{j})\alpha-1 (\textrm{k})-\alpha+1 (\textrm{l})-\alpha-1\\
(\textrm{m})\alpha+\frac{1}{2} (\textrm{n})\alpha-\frac{1}{2} (\textrm{o})-\alpha+\frac{1}{2} (\textrm{p})-\alpha-\frac{1}{2}
\end{eqnarray}
2021上智大学理工学部過去問
\begin{eqnarray}
{\Large\boxed{3}} iを虚数単位とする。複素数zの絶対値を|z|と表す。\\
w=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5} とし、\alpha=w+w^4 とする。\\
\\
(1)\alpha^2=\boxed{\ \ お\ \ }\ である。これより、\alpha=\frac{\boxed{\ \ ソ\ \ }+\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}である。\\
(2)複素数平面上の2点\frac{i}{2},\ -1間の距離は\ \boxed{\ \ か\ \ }\ である。\\
(3)複素数平面上の2点w^2,\ -1間の距離は\ \boxed{\ \ き\ \ }\ である。\\
(4)\frac{w^2+1}{w+1}=r(\cos\theta+i\sin\theta) (ただし、r \gt 0,\ 0 \leqq \theta \lt 2\pi)\\
とおくとき、r=\boxed{\ \ く\ \ }\ であり、\theta=\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}\pi\ である。\\
(5)複素数平面上で、-1を中心都市w^2を通る円上をzが動くとする。\\
x=\frac{1}{z}とするとき、xは|1+x|=\boxed{\ \ け\ \ }|x| を満たし、\boxed{\ \ こ\ \ }を\\
中心とする半径\boxed{\ \ さ\ \ }の円を描く。\\
\\
\boxed{\ \ お\ \ }~\ \boxed{\ \ さ\ \ }の選択肢\\
(\textrm{a})1 (\textrm{b})2 (\textrm{c})\alpha (\textrm{d})2\alpha\\
(\textrm{e})\frac{\alpha}{2}+1 (\textrm{f})\frac{\alpha}{2}-1 (\textrm{g})-\frac{\alpha}{2}+1 (\textrm{h})-\frac{\alpha}{2}-1\\
(\textrm{i})\alpha+1 (\textrm{j})\alpha-1 (\textrm{k})-\alpha+1 (\textrm{l})-\alpha-1\\
(\textrm{m})\alpha+\frac{1}{2} (\textrm{n})\alpha-\frac{1}{2} (\textrm{o})-\alpha+\frac{1}{2} (\textrm{p})-\alpha-\frac{1}{2}
\end{eqnarray}
2021上智大学理工学部過去問
投稿日:2021.08.27