穴埋め 大阪教育大附属平野 - 質問解決D.B.(データベース)

穴埋め  大阪教育大附属平野

問題文全文(内容文):
▢を埋めよ
\begin{array}{r}
▢▢ \\[-3pt]
\underline{\times\phantom{0}▢▢}\\[-3pt]
▢▢▢ \\[-3pt]
\underline{\phantom{0}▢▢▢\phantom{0}} \\[-3pt]
9216
\end{array}

大阪教育大学附属高等学校平野校舎
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
▢を埋めよ
\begin{array}{r}
▢▢ \\[-3pt]
\underline{\times\phantom{0}▢▢}\\[-3pt]
▢▢▢ \\[-3pt]
\underline{\phantom{0}▢▢▢\phantom{0}} \\[-3pt]
9216
\end{array}

大阪教育大学附属高等学校平野校舎
投稿日:2023.06.21

<関連動画>

【高校受験対策/数学】死守70

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・数学 死守70

①$x^2-36y^2$

➁$(x+3)(x-4)-8$

③$(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})$

④$x(x-6)=-4(x-2)$

⑤$3x^2-5x+1=0$

⑥$3a+b=10$

⑦$-6+9÷\frac{1}{4}$

⑧$x^2+xy$

⑨$5xy^2×7xy÷(-x)^2$

➉$\frac{5x-3y}{3}-\frac{3x-7y}{4}$

⑪$3x+4y=x+y=2$

⑫$(2\sqrt{10}-5)(\sqrt{10}+4)$

⑬$x^2-6x-18$

⑭$(x-5)^2-7(x-5)+12$

⑮$0.2(x-2)=x+1.2$

⑯$\frac{x-2}{4}+\frac{2-5x}{6}=1$
この動画を見る 

福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART2)

アイキャッチ画像
単元: #式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。

チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。

2023京都大学理系過去問
この動画を見る 

【中1数学】【方程式】最重要単元!方程式!元大手塾講師が教える!中学数学基礎講座 第20回 方程式の解き方

アイキャッチ画像
単元: #数学(中学生)#式の計算(単項式・多項式・式の四則計算)
指導講師: こばちゃん塾
問題文全文(内容文):
次の方程式を移項を使って解きましょう。
(1)7x+3=24
(2)7x=4x+24
(3)3x-4=x-10
例題
(1)6(x-5)=8x+2
(2)$\frac{1}{2}x+4 =\frac{x+2}{3}$
この動画を見る 

【中学数学】式の計算:等式変形マスターへの道 8発目!『最初に全部割れる編』 6x +4=8yをx=の形にしましょう。(すみません!まだあった!)

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 理数個別チャンネル
問題文全文(内容文):
6x +4=8yをx=の形にしましょう。
この動画を見る 

【中学数学】多項式の乗法除法の問題演習~計算ミスしない方法~ 1-4【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle
(1)\, 5(x+3y)
$
$\displaystyle
(2)\, -3a(b+4c)
$
$\displaystyle
(3)\, 2(2x-y)+3(x+4y)
$
$\displaystyle
(4)\, 9x+6y-4(x-2y)
$
$\displaystyle
(5)\, (12x+4y)\div 4
$
$\displaystyle
(6)\, (15a+2b)\div 3
$
$\displaystyle
(7)\, \frac{1}{4}(x+2)+\frac{1}{8}(5x-4)
$
$\displaystyle
(8)\, 12ab\div (-4b)
$
$\displaystyle
(9)\, 6ab\div 3b \times 2a
$
$\displaystyle
(10)\, (7x^2y+21xy^2+28)\div \frac{14}{3}
$
この動画を見る 
PAGE TOP