【高校数学】 数A-49 トレミーの定理 - 質問解決D.B.(データベース)

【高校数学】 数A-49 トレミーの定理

問題文全文(内容文):
円に内接する四角形$ABCD$について
$AC・BD=①$である.

②$\triangle ABC$の外接円と$\angle BAC$の
二等分線との交点を$M$とするとき,
$MA=MB+MC$ならば,$AB+AC=2BC$であることを,
トレミーの定理を用いて証明しよう.

図は動画内参照
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
円に内接する四角形$ABCD$について
$AC・BD=①$である.

②$\triangle ABC$の外接円と$\angle BAC$の
二等分線との交点を$M$とするとき,
$MA=MB+MC$ならば,$AB+AC=2BC$であることを,
トレミーの定理を用いて証明しよう.

図は動画内参照
投稿日:2016.04.28

<関連動画>

ただの分数式だけど

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,bは正の整数である.
$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{2018}$を満たす(a,b)を全て求めよ.ただし1009は素数とする.
この動画を見る 

【高校数学】 数A-37 三角形の内心・外心・重心・垂心③

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\triangle ABC$の$\angle A$の二等分線と
対辺$BC$との交点を$D$とすると,
$AB:AC=BD:DC$が成り立つことを証明しよう.

②平行四辺形$ABCD$において,辺$BC$の中点を$M$とし,
$AM$と$BD$の交点を$P$とする.
このとき,点$P$は$\triangle ABC$の重心であることを証明しよう.

図は動画内参照
この動画を見る 

2020年問題 2020整数問題 その2

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
連続$n$個の自然数の和が$2020$となる$n$と先頭の自然数$a$
$(a,n)$の組を全て求めよ
この動画を見る 

【数B】ベクトル:ベクトルの基本⑭係数比較、メネラウスの定理でベクトルを求める

アイキャッチ画像
単元: #数A#図形の性質#平面上のベクトル#内心・外心・重心とチェバ・メネラウス#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD,BEの交点をPとする。ABをb,ACをcとするとき、APをb,cを用いて表せ.
この動画を見る 

【高校数学】 数A-53 方べきの定理③

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2つの円が点$A$で同じ直線に接している.
この直線上の$A$と異なる点$B$を通る2本の直線と,
2円との2つの交点をそれぞれ$C,D$および$E,F$とする.
このとき,4点$C,D,E,F$は同一円周上にあることを証明しよう.

図は動画内参照
この動画を見る 
PAGE TOP