【高校数学】数Ⅰ-43 2次関数の最大・最小② - 質問解決D.B.(データベース)

【高校数学】数Ⅰ-43 2次関数の最大・最小②

問題文全文(内容文):
◎次の2次関数に最大値、最小値があれば、それを求めよう。
①$y=2x^2-3(-2 \leqq x \leqq 3)$
②$y=-3x^2+6x+2(-1 \leqq x \leqq 3)$
③$y=x^2-4x+2(-2 \lt x \leqq 4)$
④$y=\displaystyle \frac{1}{3}x^2+2x+2(-2 \leqq x \lt 1)$
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2次関数に最大値、最小値があれば、それを求めよう。
①$y=2x^2-3(-2 \leqq x \leqq 3)$
②$y=-3x^2+6x+2(-1 \leqq x \leqq 3)$
③$y=x^2-4x+2(-2 \lt x \leqq 4)$
④$y=\displaystyle \frac{1}{3}x^2+2x+2(-2 \leqq x \lt 1)$
投稿日:2014.08.06

<関連動画>

【算数・中学数学・数Ⅰ】算数でも数学でも出てくる「平均値と中央値」の違い~年収のお話もあるよ~ ※2020年度学習指導要領改訂で中央値は算数で習うようになりました。

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中1数学#数Ⅰ#資料の活用#データの分析#データの分析#その他#その他#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
平均と中央値って何が違うの??日本の平均年収441万円ってどうなのよ??
データを読み解く力は、今後とても大切です!!必見。
この動画を見る 

【わかりやすく】集合の「倍数の個数」の求め方(数学A)

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
100から300までの自然数のうち、次のような数の個数を求めよ。
(1)5の倍数
(2)7の倍数
(3)5の倍数または7の倍数
(4)5の倍数であるが、7の倍数ではない数
(5)5の倍数でも7の倍数でもない数
この動画を見る 

√5が無理数であるユニークな証明 黄金比

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{ 5 }$が無理数であることを証明せよ
この動画を見る 

共通テスト数学1A_第1問を簡単に解く方法教えます

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
[1]$c$を正の整数とする。$x$の2次方程式
  $2x^2+(4c-3)x+2c^2-c-11=0$ について考える。

(1)$c=1$のとき、①の左辺を因数分解すると
  $([ア]x+[イ])(x-[ウ])$
  であるから、①の解は
  $x=-\displaystyle \frac{[イ]}{[ア]},[ウ]$である。

(2)$c=2$のとき、①の解は
  $x=\displaystyle \frac{-[エ] \pm \sqrt{ [オカ] }}{[キ]}$
  であり、大きい方の解を$a$とすると
  $\displaystyle \frac{5}{a}=\displaystyle \frac{[ク] + \sqrt{ [ケコ] }}{[サ]}$
  である。また、$m<\displaystyle \frac{5}{a}<m+1$を満たす整数は[シ]である。

(3)太郎さんと花子さんは、①の解について考察している。
-----------------
太郎:①の解は$c$の値によって、ともに有理数である場合もあれば、
   ともに無理数である場合もあるね。
   $c$がどのような値のときに、解は有理数になるのかな。

花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。
-----------------
①の解が異なる二つの有理数であるような正の整数$c$の個数は[ス]個である。
この動画を見る 

2024山口大 1の10乗根のナイスな問題

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2Z^4+(1-\sqrt{ 5 })Z^2+2=0$であるとき
(1)$Z^{10}=1$であることを示せ
(2)$\cos \displaystyle \frac{\pi}{5} \cos \displaystyle \frac{2\pi}{5}=\displaystyle \frac{1}{4}$を示せ

出典:2024年山口大学数学 過去問
この動画を見る 
PAGE TOP