武蔵工業大 6次方程式の解 - 質問解決D.B.(データベース)

武蔵工業大 6次方程式の解

問題文全文(内容文):
$z^6+z^3+1=0$を満たす複素数$z$の偏角$\theta$をすべて求めよ.

2005武蔵工業大過去問
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^6+z^3+1=0$を満たす複素数$z$の偏角$\theta$をすべて求めよ.

2005武蔵工業大過去問
投稿日:2020.12.24

<関連動画>

ゆる言語学者が無限に聞いていられる素数のお話

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
素数に関して解説していきます.
この動画を見る 

4次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^4 - 1 = 0$のときx=?
この動画を見る 

高校入試なのに4次方程式!!山手学院

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$x^2(x+2)^2-11x^2-22x+24=0$

山手学院高等学校
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第1問(5)〜解と係数の関係と式の値の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (5)iを虚数単位とし、\alpha=\frac{1-\sqrt3i}{4}とする。このとき、\hspace{80pt}\\
a,bを実数とする2次方程式x^2+ax+b=0の解の1つが\alphaであるならば、\\
a=\boxed{\ \ ア\ \ },\ b=\boxed{\ \ イ\ \ }\ である。\hspace{100pt}\\
また、f(x)=4x^4-3x^3+2x^2とするとき、f(\alpha)の値は\boxed{\ \ ウ\ \ }である。
\end{eqnarray}

2022慶應義塾大学看護医療学科過去問
この動画を見る 

中国Jr 数学Olympic あっと驚く解法も

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#式と証明#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^5=1,x \neq 1$とするとき,
$\dfrac{x}{1+x^2}+\dfrac{x^2}{1+x^4}+\dfrac{x^3}{1+x^6}+\dfrac{x^4}{1+x^8}$の値を求めよ.

中国jr数学オリンピック過去問
この動画を見る 
PAGE TOP