福田の数学〜早稲田大学2024教育学部第4問〜媒介変数表示で表された曲線の対称性と面積体積の計算 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2024教育学部第4問〜媒介変数表示で表された曲線の対称性と面積体積の計算

問題文全文(内容文):
$xy$ 平面上の原点 $\mathrm{O}$ を中心とする単位円を考える。この円周上に点 $\mathrm{P}$ をとり、 $\mathrm{O}$ を極、 $x$ 軸の正の部分を始線とする点 $\mathrm{P}$ の偏角を $\theta$ とする。さらに、偏角が $3 \theta$ となる点 $\mathrm{Q}$ をこの円周上にとる。点 $\mathrm{P}$ を通る $x$ 軸に垂直な直線と点 $\mathrm{Q}$ を通る $y$ 軸に垂直な直線の交点を $\mathrm{R}$ とする。次の問いに答えよ。
$(1)$ $\theta$ が $0$ から $2 \pi$ まで変化するとき、点 $\mathrm{R}$ の軌跡の概形をかけ。
$(2)$ $(1)$ の点 $\mathrm{R}$ の軌跡によって囲まれた部分の面積を求めよ。
$(3)$ $(1)$ の点 $\mathrm{R}$ の軌跡によって囲まれた部分を、 $x$ 軸の周りに $1$ 回転させてできる立体の体積を求めよ。
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$xy$ 平面上の原点 $\mathrm{O}$ を中心とする単位円を考える。この円周上に点 $\mathrm{P}$ をとり、 $\mathrm{O}$ を極、 $x$ 軸の正の部分を始線とする点 $\mathrm{P}$ の偏角を $\theta$ とする。さらに、偏角が $3 \theta$ となる点 $\mathrm{Q}$ をこの円周上にとる。点 $\mathrm{P}$ を通る $x$ 軸に垂直な直線と点 $\mathrm{Q}$ を通る $y$ 軸に垂直な直線の交点を $\mathrm{R}$ とする。次の問いに答えよ。
$(1)$ $\theta$ が $0$ から $2 \pi$ まで変化するとき、点 $\mathrm{R}$ の軌跡の概形をかけ。
$(2)$ $(1)$ の点 $\mathrm{R}$ の軌跡によって囲まれた部分の面積を求めよ。
$(3)$ $(1)$ の点 $\mathrm{R}$ の軌跡によって囲まれた部分を、 $x$ 軸の周りに $1$ 回転させてできる立体の体積を求めよ。
投稿日:2024.10.31

<関連動画>

18神奈川県教員採用試験(数学:11番 区分求積法)

アイキャッチ画像
単元: #積分とその応用#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\boxed{11}$
$\displaystyle \lim_{ n \to m } \frac{1}{n} ( \sqrt{\frac{n+1}{n}} + \sqrt{\frac{n+2}{n}} + \cdots +\sqrt{\frac{n+n}{n}})$
この動画を見る 

#小樽商科大学#不定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#小樽商科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+2}-\sqrt{ 2 }}$ $dx$

出典:小樽商科大学
この動画を見る 

#高専#不定積分_16#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x-1}{\sqrt[ 3 ]{ x }-1} dx$
この動画を見る 

重積分③【積分領域の工夫】(高専数学 微積II,数学検定1級解析)

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
ex1
$∬_D x^2y dx dy$
$D : x \geqq 0, y \geqq 0, x^2+y^2 \leqq 1 $
この動画を見る 

大学入試問題#185 大阪府立大学(2010) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{1}{\sqrt{ (3+x^2)^3 }}dx$を計算せよ。

出典:2010年大阪府立大学 入試問題
この動画を見る 
PAGE TOP