福田の数学〜中央大学2023年経済学部第1問(2)〜同じものを含む順列 - 質問解決D.B.(データベース)

福田の数学〜中央大学2023年経済学部第1問(2)〜同じものを含む順列

問題文全文(内容文):
$\Large\boxed{1}$ (2)E, C, O, N, O, M, I, C, Sの9文字を並べ替えて作ることのできる文字列の個数はC, O, M, M, E, R, C, Eの8文字を並べ替えて作ることのできる文字列の個数と比べて何倍あるか。
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)E, C, O, N, O, M, I, C, Sの9文字を並べ替えて作ることのできる文字列の個数はC, O, M, M, E, R, C, Eの8文字を並べ替えて作ることのできる文字列の個数と比べて何倍あるか。
投稿日:2023.09.27

<関連動画>

福田の数学〜早稲田大学2022年理工学部第3問〜漸化式と数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ rを実数とする。次の条件によって定められる数列\left\{a_n\right\},\left\{b_n\right\},\left\{c_n\right\}を考える。\\
a_1=r,\hspace{15pt}a_{n+1}=\frac{[a_n]}{4}+\frac{a_n}{4}+\frac{5}{6}\hspace{15pt}(n=1,2,3,\ldots)\\
b_1=r,\hspace{15pt}b_{n+1}=\frac{b_n}{2}+\frac{7}{12}\hspace{15pt}(n=1,2,3,\ldots)\\
c_1=r,\hspace{15pt}c_{n+1}=\frac{c_n}{2}+\frac{5}{6}\hspace{15pt}(n=1,2,3,\ldots)\\
ただし、[x]はxを超えない最大の整数とする。以下の問いに答えよ。\\
(1)\lim_{n \to \infty}b_nと\lim_{n \to \infty}c_nを求めよ。\\
(2)b_n \leqq a_n \leqq c_n\hspace{15pt}(n=1,2,3,\ldots)を示せ。\\
(3)\lim_{n \to \infty}a_nを求めよ。
\end{eqnarray}

2022早稲田大学理工学部過去問
この動画を見る 

【高校数学】等比数列の一般項の例題演習~公式を使いこなそう~ 3-5.5【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
次の等比数列の一般項を求めよ。また、第8項を求めよ。
 (a)-2,2,-2,2,…
 (b)1,-3,9,-27,…

2⃣
第4項が-24、第6項が-96である、等比数列${a_{n}}$の一般項を求めよ。
この動画を見る 

福田の数学〜大阪大学2023年理系第5問〜確率漸化式と整数の性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 1個のさいころをn回投げて、k回目に出た目を$a_k$とする。$b_n$を
$b_n$=$\displaystyle\sum_{k=1}^na_1^{n-k}a_k$
により定義し、b_nが7の倍数とする確率を$p_n$とする。
(1)$p_1$, $p_2$を求めよ。
(2)数列$\left\{p_n\right\}$の一般項を求めよ。

2023大阪大学理系過去問
この動画を見る 

記号は数II,中身は難関中学入試

アイキャッチ画像
単元: #数Ⅱ#数列#過去問解説(学校別)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_n=[\log_4 n],\displaystyle \sum_{k=1}^n a_k=1104$
nの値を求めよ.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題090〜名古屋大学2018年度理系第1問〜定積分と不等式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 自然数nに対し、定積分$I_n$=$\displaystyle\int_0^1\frac{x^n}{x^2+1}dx$を考える。このとき、次の問いに答えよ。
(1)$I_n$+$I_{n+2}$=$\frac{1}{n+1}$を示せ。
(2)0≦$I_{n+1}$≦$I_n$≦$\frac{1}{n+1}$を示せ。
(3)$\displaystyle\lim_{n \to \infty}nI_n$ を求めよ。
(4)$S_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{2k}$ とする。このとき(1), (2)を用いて$\displaystyle\lim_{n \to \infty}S_n$ を求めよ。

2018名古屋大学理系過去問
この動画を見る 
PAGE TOP