【数Ⅰ】【数と式】平方根の式の値 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【数と式】平方根の式の値 ※問題文は概要欄

問題文全文(内容文):
$x=\dfrac{\sqrt{ 5 }+2}{\sqrt{ 5 }-2}$ , $y=\dfrac{\sqrt{ 5 }-2}{\sqrt{ 5 }+2}$

のとき, 次の式の値を求めよ。

(1) $x+y$ (2) $xy$ (3) $x^2y+xy^2 $
(4) $x^2+y^2$ (5) $x^3+y^3$



$x=\sqrt{ 2 }-1$
のとき, 次の式の値を求めよ。
(1) $x+\dfrac{1}{x}$ (2) $x^2+\dfrac{1}{x^2}$ (3) $x^3+\dfrac{1}{x^3}$
(4) $x^4+\dfrac{1}{x^4}$ (5) $x^5+\dfrac{1}{x^5}$
チャプター:

0:00 オープニング
0:05 第一問 xの値とyの値の有理化
1:01 第一問(1)、(2)解説
1:52 第一問(3)、(4)解説
4:04 第一問(5)解説
5:03 第二問(1)~(3)解説
7:41 第二問(4)、(5)解説
9:52 エンディング

単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x=\dfrac{\sqrt{ 5 }+2}{\sqrt{ 5 }-2}$ , $y=\dfrac{\sqrt{ 5 }-2}{\sqrt{ 5 }+2}$

のとき, 次の式の値を求めよ。

(1) $x+y$ (2) $xy$ (3) $x^2y+xy^2 $
(4) $x^2+y^2$ (5) $x^3+y^3$



$x=\sqrt{ 2 }-1$
のとき, 次の式の値を求めよ。
(1) $x+\dfrac{1}{x}$ (2) $x^2+\dfrac{1}{x^2}$ (3) $x^3+\dfrac{1}{x^3}$
(4) $x^4+\dfrac{1}{x^4}$ (5) $x^5+\dfrac{1}{x^5}$
投稿日:2024.11.08

<関連動画>

1089になる証明ついてこれた?フルは↑

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
任意の3桁の数とそれを逆から読んだ数のうち大きい方から小さい方を引いた3桁の数と、これを逆から読んだ3桁の数の和が1089になることを証明する動画です
この動画を見る 

【高校数学】数Ⅰ-6 展開③(応用編)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎展開しよう。
①$(x+2y+3z)(x+2y-3z)$
②$(x^2+2x-4)(x^2-2x-4)$
③$(3x+3y-z)(x+y+z)$
④$(a+b-c-d)(a-b-c+d)$
⑤$(5x^2-xy-2y^2)(3x^2+2xy+y^2)$を展開したとき、$x^2y^2$の係数は?
この動画を見る 

【高校数学あるある】平方根を含んだ計算問題!解けると気持ちいい! #Shorts

アイキャッチ画像
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\dfrac{1}{\sqrt2+1}+\dfrac{1}{\sqrt3+\sqrt2}+\dfrac{1}{\sqrt4+\sqrt3}$
$+……+\dfrac{1}{\sqrt10+\sqrt9}$

これを解け。

この動画を見る 

【高校数学】余弦定理の証明~上級者向け~ 3-6.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
余弦定理の証明~上級者向け~
この動画を見る 

【数検2級】数学検定2級2次:問題1

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#2次関数#2次関数とグラフ#数学検定#数学検定2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1.(選択)
aを定数とします。2次関数$y=2x^3-4ax+1(0\leqq x \leqq 3)$について、次の問いに答えなさい。
(1)$a=2$のとき、yのとり得る値の範囲を求めなさい。
(2)$y$のとり得る値の範囲が$1\leqq y\leqq 25$であるとき、aの値を求めなさい。
この動画を見る 
PAGE TOP