福田の数学〜千葉大学2022年理系第4問〜不定方程式とユークリッドの互除法 - 質問解決D.B.(データベース)

福田の数学〜千葉大学2022年理系第4問〜不定方程式とユークリッドの互除法

問題文全文(内容文):
0以上9999以下の整数を4桁で表示し、以下の操作を行うこととする。
ただし、 4桁で表示するとは、整数が100以上999以下の場合は千の位の数字を0、
10以上99以下の場合は千の位と百の位の数字を0、1以上9以下の場合は
千の位と百の位と十の位の数字を0、そして0はどの位の数字も0とすることである。
操作:千の位の数字と十の位の数字を入れ換える。さらに、百の位の数字と
一の位の数字を入れ換える。
また、整数Lに対し、操作によって得られた整数を$\bar{ L }$と表す。
(1) Mを0以上9999以下の整数とし、$M=100x+y$のように整数$x, y (0 \leqq x \leqq 99,$
$ 0 \leqq y \leqq 99)$を用いて表す。操作によって得られた$\bar{ M }$ がMの
$\frac{2}{3}$倍に3を足した数 に等しいならば、
$-197x+298y = 9$が成り立つことを証明せよ。
(2) Nが0以上 9999 以下の整数ならば、操作によって
得られた整数$\bar{ N }$はNの$\frac{2}{3}$倍に1を足した数と等しくならないことを証明せよ。

2022千葉大学理系過去問
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
0以上9999以下の整数を4桁で表示し、以下の操作を行うこととする。
ただし、 4桁で表示するとは、整数が100以上999以下の場合は千の位の数字を0、
10以上99以下の場合は千の位と百の位の数字を0、1以上9以下の場合は
千の位と百の位と十の位の数字を0、そして0はどの位の数字も0とすることである。
操作:千の位の数字と十の位の数字を入れ換える。さらに、百の位の数字と
一の位の数字を入れ換える。
また、整数Lに対し、操作によって得られた整数を$\bar{ L }$と表す。
(1) Mを0以上9999以下の整数とし、$M=100x+y$のように整数$x, y (0 \leqq x \leqq 99,$
$ 0 \leqq y \leqq 99)$を用いて表す。操作によって得られた$\bar{ M }$ がMの
$\frac{2}{3}$倍に3を足した数 に等しいならば、
$-197x+298y = 9$が成り立つことを証明せよ。
(2) Nが0以上 9999 以下の整数ならば、操作によって
得られた整数$\bar{ N }$はNの$\frac{2}{3}$倍に1を足した数と等しくならないことを証明せよ。

2022千葉大学理系過去問
投稿日:2022.05.16

<関連動画>

【中学数学・数A】中高一貫校用問題集(代数編)確率と標本調査:確率の計算:じゃんけん A,B,Cの3人がじゃんけんを1回行うとき、次の問いに答えよう。(問題文全文は概要欄を見てね)

単元: #数学(中学生)#中3数学#数A#場合の数と確率#確率#標本調査#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
A,B,Cの3人がじゃんけんを1回行うとき、次の問いに答えよう。
(1)手の出し方は、何通りあるか求めよう。
(2)全員が同じ手を出して、引き分けとなる確率を求めよう。
(3)Aだけが勝つ確率を求めよう。
(4)1人だけが負ける確率を求めよう。
この動画を見る 

東大の整数問題【数学 入試問題】【東京大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$3$以上$9999$以下の奇数$a$で、$a^2-a$が$10000$で割り切れるものをすべて求めよ。

東大過去問
この動画を見る 

東工大 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
神戸薬科大学過去問題
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$
$x<y<z$(自然数)

東京工業大学過去問題
$(ab-1)(bc-1)(ca-1)$がabcで割り切れる1<a<b<c(自然数)
a,b,cをすべて求めよ。
この動画を見る 

六角形バリアは不可能じゃね?

アイキャッチ画像
単元: #図形の性質#空間における垂直と平行と多面体(オイラーの法則)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
葬送のフリーレンのバリアなどで六角形で球を作っている件に関して解説していきます。
この動画を見る 

どっちがでかい?昨日の反省

アイキャッチ画像
単元: #整数の性質
指導講師: 鈴木貫太郎
問題文全文(内容文):
どっちがでかい

$2^{370}$ VS $13^{101}$
この動画を見る 
PAGE TOP