式の値 2通りの解説 函館ラ・サールB - 質問解決D.B.(データベース)

式の値 2通りの解説 函館ラ・サールB

問題文全文(内容文):
$a^2+3ab-18b^2=0(a>0,b>0)$

函館ラ・サール高等学校
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^2+3ab-18b^2=0(a>0,b>0)$

函館ラ・サール高等学校
投稿日:2021.05.10

<関連動画>

5で割った余り 法政大学高校

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)#法政大学高等学校
指導講師: 数学を数楽に
問題文全文(内容文):
$2023^{3}+2024^{4}$
を5で割った時の余りは?
この動画を見る 

解いたらわかるこの気持ち

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 数学を数楽に
問題文全文(内容文):
$3x+2y=1$のとき
$9x^2-4y^2+3x+6y=$
この動画を見る 

高等学校入試予想問題:山形県~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#確率#2次関数#三角形と四角形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\boxed{1}$
(1)$2(a+4b)+3(a-2b)$を計算せよ.
(2)$\sqrt{27}-\dfrac{6}{\sqrt3}$を計算せよ.
(3)$(x+1)^2+(x-4)(x+2)$を計算せよ.
(4)袋の中に赤玉2個と白玉1個.この袋から玉を1個取り出し,色を調べて戻す.
もう1度玉を取り出すとき,2個共赤玉が出る確率を求めよ.

$\boxed{2}$
(1)$a$の値は?
(2)点$c$の$y$座標
(3)$\triangle ABC$の面積は?
(4)2点$A,B$を通る直線の式は?

$\boxed{3}$
(1)$\triangle AFC \equiv \triangle BEC$の証明をせよ.
(2)$\triangle=40cm^2$のとき,$\triangle ABF=20cm^2$のとき,$AF=?$

山形県立高校過去問
この動画を見る 

たすき掛けの裏技が使えないときは?

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
たすき掛けの裏技が使えないときは?
$3x^2+15x+12=??$
この動画を見る 

高等学校入学試験予想問題:明治学院高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#空間図形#1次関数#2次関数#円#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 9xy^2\div \left(-\dfrac{3}{2}xy\right)^3\times \dfrac{3}{4}x^4y$を計算せよ.
(2)$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+\dfrac{y}{2}=1 \\
2x-3y=1
\end{array}
\right.
\end{eqnarray}$ を解け.
(3)図の円$ O $において,$ \angle x $の大きさを求めよ.

$ \boxed{2}$

放物線$ y=x^2 $上に5点$ A,B,C,D,E $があり,それぞれのx座標は,$ a,-5,-2,2,4 $である.(ただし,$ a\lt -5 $)
さらに,線分$ CE $の中点$ F $は直線$ AD $上にあるとき,あとの問いに答えよ.
(1)点$ F $の座標を求めよ.
(2)$ a $の値を求めよ.
(3)$ \triangle ABD $と$ \triangle AED $の面積の比の最も簡単な整数の比で表せ.

$ \boxed{3}$

図のように,直方体$ ABCD-EFGH $があり,$ AB=3,AD=6,AE=2$である.
点$G$からこの直方体の対角線$CE$に垂線を引き,その交点を$P$とする.
このとき,次の各問いに答えよ.
(1)線分$ GP $の長さを求めよ.
(2)三角錐$ P-GEF$の体積を求めよ.
(3)辺$ AD $の中点を$Q$とし,辺$FG$上に$FR=2$となる点$R$をとる.
3点$B,Q,R $を通る平面と線分$EG$の交点を$S$とするとき,三角錐$P-GSR $の体積を求めよ.
この動画を見る 
PAGE TOP