【数Ⅲ】数列の極限:次の極限値を求めよう。lim[n→∞](1-1/2²)(1-1/3²)…(1-1/n²) - 質問解決D.B.(データベース)

【数Ⅲ】数列の極限:次の極限値を求めよう。lim[n→∞](1-1/2²)(1-1/3²)…(1-1/n²)

問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{n\to\infty}\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)・・・\left(1-\dfrac{1}{n^2}\right)$
チャプター:

0:00 オープニング
0:05 問題文
0:10 問題解説:A²-B²=(A-B)(A+B)の利用
1:16 名言

単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{n\to\infty}\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)・・・\left(1-\dfrac{1}{n^2}\right)$
投稿日:2021.03.13

<関連動画>

【高校数学】数Ⅲ-78 関数の極限③(右側左側)

アイキャッチ画像
単元: #関数と極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{x\to -0}\dfrac{\vert x \vert}{x}$

②$\displaystyle \lim_{x\to 3+0}\dfrac{x^2-3x}{\vert x-3 \vert}$

③$\displaystyle \lim_{x\to 1-0}\dfrac{\vert x-1\vert}{x^3-1}$

④$x\to 0$のときの$\dfrac{x}{\vert x\vert}$
この動画を見る 

#筑波大学(2020) #極限 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{x\ \sin\ x}{1-\cos\ x}$

出典:2020年筑波大学推薦医学科
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第5問〜空間内の直線上の点列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標空間内において、ベクトル
$\overrightarrow{ a }=(1,2,1), \overrightarrow{ b }=(1,1,-1), \overrightarrow{ c }=(0,0,1)$
が定める直線
$l:s\overrightarrow{ a }, l':t\overrightarrow{ b }+\overrightarrow{ c }$
を考える。点$A_1$を原点(0,0,0)とし、点$A_1$から直線l'に下ろした垂線$A_1B_1$と
おく。次に、点$B_1(t_1\overrightarrow{ b }+\overrightarrow{ c })$から直線lに下ろした垂線を$B_1A_2$とおく。
同様に、点$A_k(s_k\overrightarrow{ a })$から直線l'に下ろした垂線を$A_kB_k$、点$B_k(t_k\overrightarrow{ b }+\overrightarrow{ c })$から直線l
に下ろした垂線を$B_kA_{k+1}$とする手順を繰り返して、点$A_n(s_n\overrightarrow{ a }),B_n(t_n\overrightarrow{ b }+\overrightarrow{ c })$
(nは正の整数)を定める。
(1)$s_n$を用いて$s_{n+1}$を表せ。
(2)極限値$S=\lim_{n \to \infty}s_n, T=\lim_{n \to \infty}t_n$を求めよ。
(3)(2)で求めたS,Tに対して、点A,Bをそれぞれ$A(S\overrightarrow{ a }),B(T\overrightarrow{ b }+\overrightarrow{ c })$とおくと、
直線ABは2直線l,l'の両方と直交することを示せ。

2022東北大学理系過去問
この動画を見る 

15滋賀県教員採用試験(数学:5番 グラフと極限)

アイキャッチ画像
単元: #関数と極限#微分とその応用#数列の極限#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$
$y=\left(\dfrac{e}{x}\right)^{\log x}$のグラフをかけ.
この動画を見る 

福田のわかった数学〜高校3年生理系009〜極限(9)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(9)
(1)$|x| \lt 1$のとき、$\lim_{n \to \infty}nx^n=0$を示せ。
(2)$\displaystyle \sum_{n=1}^{\infty}nx^{n-1}$の収束・発散を調べよ。
この動画を見る 
PAGE TOP