【数C】【平面上の曲線】直角双曲線x²-y²=a² (a>0)上の点Pから、2つの漸近線に垂線PQ,PRを下ろす。このとき、PQ・PRは一定であることを証明せよ - 質問解決D.B.(データベース)

【数C】【平面上の曲線】直角双曲線x²-y²=a² (a>0)上の点Pから、2つの漸近線に垂線PQ,PRを下ろす。このとき、PQ・PRは一定であることを証明せよ

問題文全文(内容文):
直角双曲線 $x^2+y^2=a^2 \ (a \gt 0)$ 上の点$\mathrm{P}$ から、
$2$ つの漸近線に垂線$\mathrm{PQ,PR}$ を下ろす。
このとき、 $\mathrm{PQ \cdot PR}$ は一定であることを証明せよ。
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
直角双曲線 $x^2+y^2=a^2 \ (a \gt 0)$ 上の点$\mathrm{P}$ から、
$2$ つの漸近線に垂線$\mathrm{PQ,PR}$ を下ろす。
このとき、 $\mathrm{PQ \cdot PR}$ は一定であることを証明せよ。
投稿日:2025.06.03

<関連動画>

【数C】【平面上の曲線】4点A(a,0)B(0,b)C(-a,0)D(0,-8)(a>0,b>0)を頂点とするひし形ABCDがある。PA・PC=PB・PDを満たす点Pの軌跡を求めよ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
$4$ 点 $\mathrm{ A }(a, \ 0),\ \mathrm{ B }(0, \ b),\ \mathrm{ C }(-a, \ 0),\ \mathrm{ D }(0, \ -b) \ (a \gt 0, \ b \gt 0)$
を頂点とするひし形 $\mathrm{ABCD}$ がある。
$\mathrm{PA \cdot PC } = \mathrm{PB \cdot PD}$ を満たす点$\mathrm{P}$ の軌跡を求めよ。
この動画を見る 

【数Ⅲ】2次曲線:点Pが円x²+y²=4上を動く。yだけを1/2した点Qの軌跡を求めよ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Pが円$x²+y²=4$上を動く。yだけを$\dfrac{1}{2}$した点Qの軌跡を求めよ。
この動画を見る 

二次曲線:東京~全国入試問題解法

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 東京

【別解付き!】
$x^2-xy+y^2=3$
の囲む面積を求めよ。
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第6問〜楕円を軸以外の直線で回転させた立体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{6}}$直線$x+y=1$に接する楕円$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a \gt 0,\ b \gt 0)$がある。
このとき、$b^2=\boxed{\ \ ア\ \ }\ a^2+\boxed{\ \ イ\ \ }$である。
この楕円を直線$y=b$のまわりに1回転してできる立体の体積は、
$a=\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$のとき、
最大値$\frac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }}\pi^2$をとる。

2022早稲田大学人間科学部過去問
この動画を見る 

高校数学:数学検定準1級1次:問題6,7 双曲線の焦点、関数の極限

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上の曲線#関数と極限#2次曲線#関数の極限#数学検定#数学検定準1級#数学(高校生)#数C#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
xy平面上の双曲線

$\frac{x^2}{36}-\frac{y^2}{64}=-1$

の焦点の座標を求めなさい。


次の極限値を求めなさい。

$\displaystyle \lim_{ x \to 1 }\displaystyle \frac{x^2+2x-3}{\sqrt[ 3 ]{ x }-1}$
この動画を見る 
PAGE TOP