大学入試問題#175 名古屋工業大学2020 定積分 - 質問解決D.B.(データベース)

大学入試問題#175 名古屋工業大学2020 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{2x^3-x^2+5}{x^2+1}\ dx$を計算せよ。

出典:2020年名古屋工業大学 入試問題
チャプター:

04:22~ 解答のみ掲載 約10秒間隔

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名古屋工業大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{2x^3-x^2+5}{x^2+1}\ dx$を計算せよ。

出典:2020年名古屋工業大学 入試問題
投稿日:2022.04.21

<関連動画>

#埼玉大学#定積分#ますただ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{2x^3}{1+x^2} dx$

出典:埼玉大学
この動画を見る 

#数検準1級1次 #7

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} (1+log x)^2$ $dx$

出典:数検準1級1次
この動画を見る 

大学入試問題#825「まあまあ良問」 #茨城大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-7}^{1}(2-x) \sqrt[ 3 ]{ 1-x }\ dx$

出典:2022年茨城大学
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第4問〜定積分と不等式Part1

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ (1)0≦$x$≦$\displaystyle\frac{\pi}{2}$において常に不等式|$b$|≦|$b$+1-$b\cos x$|が成り立つような実数$b$の値の範囲は$\boxed{\ \ シ\ \ }$≦$b$≦$\boxed{\ \ ス\ \ }$である。
以下、$b$を$\boxed{\ \ シ\ \ }$≦$b$≦$\boxed{\ \ ス\ \ }$を満たす0でない実数とし、数列$\left\{a_n\right\}$を
$a_n$=$\displaystyle\int_0^{\frac{\pi}{2}}\frac{\sin x(\cos x)^{n-1}}{(b+1-b\cos x)^n}dx$ (n=1,2,3,...)で定義する。
(2)$\displaystyle\lim_{n \to \infty}b^na_n$=0 が成り立つことを証明しなさい。
(3)$a_1$=$\boxed{\ \ セ\ \ }$である。
(4)$a_{n+1}$を$a_n$,$n$,$b$を用いて表すと$a_{n+1}$=$\boxed{\ \ ソ\ \ }$となる。
(5)$\displaystyle\lim_{n \to \infty}\left\{\frac{1}{1・2}-\frac{1}{2・2^2}+\frac{1}{3・2^3}-...+\frac{(-1)^{n+1}}{n・2^n}\right\}$=$\boxed{\ \ タ\ \ }$である。
この動画を見る 

【高校数学】毎日積分16日目【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_\frac{π}{3}^{\frac{2}{3}π}\frac{dθ}{sinθ}$
これを解け.
この動画を見る 
PAGE TOP