中2数学「直角三角形の合同証明③」【毎日配信】 - 質問解決D.B.(データベース)

中2数学「直角三角形の合同証明③」【毎日配信】

問題文全文(内容文):
中2~直角三角形の合同証明③

証明③例1 次の図のように正方形ABCDの辺BC上に、頂点B、Cと異なる点をとります、頂点A、Cから線分DEに垂線をひき、その交点をそれぞれP、Qとすると、△ADP≡△DCQであることを証明しなさい。

※図は動画内参照
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~直角三角形の合同証明③

証明③例1 次の図のように正方形ABCDの辺BC上に、頂点B、Cと異なる点をとります、頂点A、Cから線分DEに垂線をひき、その交点をそれぞれP、Qとすると、△ADP≡△DCQであることを証明しなさい。

※図は動画内参照
投稿日:2023.04.12

<関連動画>

【分数…同じ部分…!】連立方程式:日本大学第三高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{2x+4}{3}+\dfrac{y+1}{2}=1 \\
2x+4-\dfrac{y+1}{6}=-\dfrac{1}{3}
\end{array}
\right.
\end{eqnarray}$
を解きなさい.

日大第三高校過去問
この動画を見る 

【中学数学】平行四辺形の定義と性質~どこよりも分かりやすく~【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
平行四辺形の定義と性質
わかりやすく解説します
この動画を見る 

【どちらも大切な解法!】一次関数:新潟県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#1次関数#高校入試過去問(数学)#新潟県公立高校入試#新潟県高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2点(-1,1),(2,7)を通る直線の式を答えなさい.

新潟県公立高等学校過去問
この動画を見る 

小数の計算 智弁和歌山中

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#過去問解説(学校別)
指導講師: 数学を数楽に
問題文全文(内容文):
$0.125+0.375 \times 0.625-0.875 \div 3.5$

智弁和歌山中学校
この動画を見る 

【高校受験対策】数学-死守32

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#平行と合同#確率#速さ#速さその他#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-2+5$を計算しなさい。

②$3 + 3 ^ 4 \div (- 9)$を計算しなさい。

③$4(2a - 3) - 2(3a - 5)$を計算しなさい。

④$\dfrac{x-y}{6}-\dfrac{x+y}{8}$を計算しなさい。

⑤$3\sqrt8 - \sqrt{50} + sqrt{18}$を計算しなさい。

⑥2次方程式$(x + 2)(x - 2) = 2(3x - 2)$を解きなさい。

⑦かずよしくんは、自宅から1800mはなれた学校に登校するため、
午前7時30分に家を出発した。
最初は毎分60mの速さで歩いていたが、遅刻しそうになったので、
途中から毎分100mの速さで走ったところ、午前7時56分に学校に着いた。
かずよしくんが走った道のりは何mか、求めなさい。

⑧赤球3個と白球3個が入っている袋がある。
この袋の中から、同時に2個の球を取り出すとき、
赤球と白球が1個ずつである確率を求めなさい。
ただし、どの球を取り出すことも、同様に確からしいものとする。

⑨左下の図1で、正六角形$ABCDEF$に、2つの平行な直線$\ell、m$が交わっており、
交点はそれぞれ$G、H、I、J$である。
$\angle GHF=78°$のとき、$\angle IJE$の大きさを求めなさい。

⑩ある中学校の1年A組25人と1年B組25人の休日の学習時間を調べた。
下の図2、 図3は、それぞれの結果をヒストグラムに表したもので、
2つの図から「1年A組は1年B組 より、$\Box$」と読みとることができた。
$\Box$にあてはまるものとして適切なものを、 下のア~エから1つ選び、記号で書きなさい。

ア→学習時間の分布の範囲が小さい
イ→最頻値を含む階級の度数が多い
ウ→中央値を含む、階級の度数が少ない
エ→学習時間が150分以上の人数が多い

図は動画内参照
この動画を見る 
PAGE TOP