大学入試問題#29 愛知教育大学(2020) 数学的帰納法 - 質問解決D.B.(データベース)

大学入試問題#29 愛知教育大学(2020) 数学的帰納法

問題文全文(内容文):
数列$\{a_n\}$において
各自然数$n$に対して$a_n \gt 2n$をみたす。
このとき$n \geqq 2$のとき$(1+\displaystyle \frac{1}{a_1})(1+\displaystyle \frac{1}{a_1})・・・(1+\displaystyle \frac{1}{a_n}) \lt n$が成り立つことを示せ

出典:2020年愛知教育大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#愛知教育大学
指導講師: ますただ
問題文全文(内容文):
数列$\{a_n\}$において
各自然数$n$に対して$a_n \gt 2n$をみたす。
このとき$n \geqq 2$のとき$(1+\displaystyle \frac{1}{a_1})(1+\displaystyle \frac{1}{a_1})・・・(1+\displaystyle \frac{1}{a_n}) \lt n$が成り立つことを示せ

出典:2020年愛知教育大学 入試問題
投稿日:2021.10.08

<関連動画>

大学入試問題#40 東京理科大学(2021) 数列と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1=27$
$a_{n+1}=3\sqrt{ a_n }$を満たす数列$\{a_n\}$において
$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。

出典:2021年東京理科大学 入試問題
この動画を見る 

【理数個別の過去問解説】1978年度東京工業大学 数学 第2問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,b,cは1<a<b<cをみたす整数とし,(ab-1)(bc-1)(ca-1)はabcで割り切れるとする。このとき次の問に答えよう。
(1)ab+bc+ca-1はabcで割り切れることを示そう。
(2)a,b,cをすべて求めよう。
この動画を見る 

福田の数学〜東京大学2025理系第3問〜平行四辺形を囲む長方形の面積の最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed {3} $

平面四辺形$ABCD$において、

$\angle ABC = \dfrac {\pi} {6} , AB = a , BC = b , a \leqq b$とする。

次の条件を満たす長方形$EFGH$を考え、

その面積を$S$とする。

条件:点$A,B,C,D$はそれぞれ

$\quad$辺$EF,FG,GH,HE$上にある。

$\quad$ただし、辺はその両端の点も含むものとする。

(1)$\angle BCG=\theta$とするとき、

$S$を$a,b,\theta$を用いて表せ。

(2)$S$とりうる値の最大値を$a,b$を用いて表せ。

$2025$年東京大学理系過去問題
この動画を見る 

山梨大 2次方程式と複素数平面

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-2kx+k=0$は実数解なし
2つの解$\alpha,\beta$と1を複素中面で結ぶと正三角形となる。
$k$の値を求めよ

出典:2000年山梨大学 過去問
この動画を見る 

福田の数学〜京都大学2025理系第1問(2−2)〜定積分の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2-2)次の定積分の値を求めよ。

$\displaystyle \int_{0}^{\frac{\pi}{2}} \sqrt{\dfrac{1-\cos x}{1+\cos x}}dx$

$2025$年京都大学理系過去問題
この動画を見る 
PAGE TOP