東京海洋大 確率 - 質問解決D.B.(データベース)

東京海洋大 確率

問題文全文(内容文):
8チームで下図のような トーナメント方式で大会 を行う。
※図は動画内参照

AvsBと他6vs他6はどちらも勝つ確率$\frac{1}{2}$。
Avs他6,Bvs他6はA,Bの勝つ確率$\frac{2}{3}$。

Aの優勝する確率は?
①Aをブロック1、Bをブロック2 に配置した場合

②8チームを無作為 に配置した場合

東京海洋大過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京海洋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
8チームで下図のような トーナメント方式で大会 を行う。
※図は動画内参照

AvsBと他6vs他6はどちらも勝つ確率$\frac{1}{2}$。
Avs他6,Bvs他6はA,Bの勝つ確率$\frac{2}{3}$。

Aの優勝する確率は?
①Aをブロック1、Bをブロック2 に配置した場合

②8チームを無作為 に配置した場合

東京海洋大過去問
投稿日:2023.08.26

<関連動画>

福田の数学〜東京大学2023年理系第2問〜隣どうしにならない順列と条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 黒玉3個、赤玉4個、白玉5個が入っている袋から玉を1個ずつ取り出し、取り出した玉を順に横一列に12個すべて並べる。ただし、袋から個々の玉が取り出される確率は等しいものとする。
(1)どの赤玉も隣り合わない確率pを求めよ。
(2)どの赤玉も隣り合わないとき、どの黒玉も隣り合わない条件付き確率qを求めよ。

2023東京大学理系過去問
この動画を見る 

福田のわかった数学〜高校1年生083〜確率(3)さいころの目の積の確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$確率(3) 
さいころの目(1)
さいころをn回投げて出た目の積が6の倍数となる
確率を求めよ。ただし、nは2以上の自然数とする。
この動画を見る 

選択肢だけで答えが分かる裏技

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
選択肢だけで答えが分かる裏技に関して解説します。
この動画を見る 

福田の数学〜東京大学2025文系第3問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$

白玉$2$個が横に並んでいる。

投げたとき表と裏の出る確率が

それぞれ$\dfrac{1}{2}$のコインを用いて、

次の手順 (*) をくり返し、

白玉または黒玉を横一列に並べていく。

手順(*)

$\quad$コインを投げ、

$\quad$表が出たら白玉、裏が出たら黒玉を、

$\quad$それまでに並べられている一番右にある玉の

$\quad$右隣におく。

$\quad$そして、新しくおいた玉の色が

$\quad$その$1$つ左の玉の色と異なり、

$\quad$かつ$2$つ左の玉の色と一致するときには、

$\quad$新しくおいた玉の$1$つ左の玉を新しくおいた玉と

$\quad$同じ色の玉にとりかえる。

例えば、手順(*)を$2$回行いコインが裏、表の順に

出た場合には、白玉が$4$つ並ぶ。

正の整数$n$に対して、手順(*)を$n$回行った時点での

$(n + 2)$個の玉の並び方を考える。

(1)$n = 3$のとき、

右から$2$番目の玉が白玉である確率を求めよ。

(2)$n$を正の整数とする。

右から$2$番目の玉が白玉である確率を求めよ。

(3)$n$を正の整数とする。

右から$1$番目と$2$番目の玉がともに白玉である確率を求めよ。

$2025$年東京大学文系過去問題
この動画を見る 

明治大 多項定理 場合の数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#式と証明#場合の数#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
明治大学過去問題
同類項は何種類か
$(x+y+z)^{88}$
この動画を見る 
PAGE TOP