【高校数学】三角関数⑦~これだけ!!三角不等式!!~ 4-9【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】三角関数⑦~これだけ!!三角不等式!!~ 4-9【数学Ⅱ】

問題文全文(内容文):
(1) 0≦θ<2πのとき、不等式$\displaystyle \frac{1}{√2}$≦sinθ<$\displaystyle \frac{√3}{2}$
  を満たすθの値の範囲を求めよ。
(2) 0≦θ<2πのとき、不等式-1≦2cosθ<√3を満たすθの値の範囲を求めよ。
(3) 0≦θ<πのとき、不等式-1<tanθ<√3を満たすθの値の範囲を求めよ
単元: #数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 0≦θ<2πのとき、不等式$\displaystyle \frac{1}{√2}$≦sinθ<$\displaystyle \frac{√3}{2}$
  を満たすθの値の範囲を求めよ。
(2) 0≦θ<2πのとき、不等式-1≦2cosθ<√3を満たすθの値の範囲を求めよ。
(3) 0≦θ<πのとき、不等式-1<tanθ<√3を満たすθの値の範囲を求めよ
投稿日:2018.10.04

<関連動画>

福田のわかった数学〜高校1年生060〜三角形の形状決定問題(1)

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$三角形の形状決定(1)
次の等式が成り立つとき、$\triangle ABC$はどんな三角形か。

$a^2+b^2+c^2=bc(\frac{1}{2}+\cos A)+ca(\frac{1}{2}+\cos B)+ab(\frac{1}{2}+\cos C)$
この動画を見る 

【数A】場合の数:青玉が1個、赤玉が6個、白玉が2個あります。これらの玉に糸を通して輪を作る方法は何通りあるか?

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
円順列?いいえ、数珠順列です!÷2をする必要がある??わかりやすく解説します!
この動画を見る 

数学「大学入試良問集」【13−9 数学的帰納法(累積帰納法)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$a_0,a_1,a_2,・・・a_n・・・$を次のように定義する。
$a_0=\displaystyle \frac{1}{2},a_{n+1}\displaystyle \sum_{k=0}^n a_k a_{n-k}n=0,1,2,・・・)$
以下の問いに答えよ。
(1)$a_1,a_2,a_3$を求めよ。
(2)一般項$a_n$を求めよ。
(3)$b_n=\displaystyle \sum_{k=0}^n\displaystyle \frac{n!}{k!(n-k)!}a_ka_{n-k}(n=0,1,2,・・・)$を求めよ。
この動画を見る 

平方根:代表的な無理数の暗記法~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
平方根:代表的な無理数の暗記法~全国入試問題解法

$\sqrt{ 2 } = 1.41421356$ 一夜一夜に人見ごろ

$\sqrt{ 3 } = 1.7320508$ ...人なみにおごれや

$\sqrt{ 5 } = 2.2360679$ 富士山ろくオウム鳴く

$\sqrt{ 6 } = 2 2.4494897$... 二夜シクシク

$\sqrt{ 7 } = 2 2.6457513$... 変に虫いないさ

$\sqrt{ 8 } = 2 2.828427$… ニヤニヤ呼ぶな

$\sqrt{ 10 } = 3 3,1622776.$……… 人丸は三色に並ぶや

この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第3問〜対称点とベクトルの絶対値の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 空間座標における2点A(2,-3,-1)とB(3,0,1)を通る直線を$l_1$とし、直線$l_1$に関して点C(1,5,-2)と対称な点をDとすると、Dの座標は($\boxed{\ \ ク\ \ }$, $\boxed{\ \ ケ\ \ }$, $\boxed{\ \ コ\ \ }$)である。また、点Dを通り$l_1$と平行な直線を$l_2$とし、点Pが直線$l_2$上を、点Qが$xy$平面上の直線$y$=$-x$+4 上をそれぞれ自由に動くとき、$|\overrightarrow{PQ}|^2$の最小値は$\boxed{\ \ サ\ \ }$である。
この動画を見る 
PAGE TOP