福田の数学〜東京大学2025文系第1問〜放物線とその法線の交点のx座標の最小値 - 質問解決D.B.(データベース)

福田の数学〜東京大学2025文系第1問〜放物線とその法線の交点のx座標の最小値

問題文全文(内容文):

$\boxed{1}$

$a$を正の実数とする。

座標平面において、

放物線$C:y=x^2$上の点$P(a,a^2)$に

おける$C$の接線と直交し、$P$を通る直線を$\ell$とおく。

$\ell$と$C$の交点のうち、$P$と異なる点を$Q$と置く。

(1)$Q$の$x$座標を求めよ。

$Q$における$C$の接線と直交し、$Q$を通る直線を$m$とおく。

$m$と$C$の交点のうち、$Q$と異なる点を$R$とおく。

(2)$a$がすべての正の実数を動くとき、

$R$の$x$座標の最小値を求めよ。

$2025$年東京大学文系過去問題
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$a$を正の実数とする。

座標平面において、

放物線$C:y=x^2$上の点$P(a,a^2)$に

おける$C$の接線と直交し、$P$を通る直線を$\ell$とおく。

$\ell$と$C$の交点のうち、$P$と異なる点を$Q$と置く。

(1)$Q$の$x$座標を求めよ。

$Q$における$C$の接線と直交し、$Q$を通る直線を$m$とおく。

$m$と$C$の交点のうち、$Q$と異なる点を$R$とおく。

(2)$a$がすべての正の実数を動くとき、

$R$の$x$座標の最小値を求めよ。

$2025$年東京大学文系過去問題
投稿日:2025.03.03

<関連動画>

高校数学:数学検定準1級1次:問題6,7 双曲線の焦点、関数の極限

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上の曲線#関数と極限#2次曲線#関数の極限#数学検定#数学検定準1級#数学(高校生)#数C#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
xy平面上の双曲線

$\frac{x^2}{36}-\frac{y^2}{64}=-1$

の焦点の座標を求めなさい。


次の極限値を求めなさい。

$\displaystyle \lim_{ x \to 1 }\displaystyle \frac{x^2+2x-3}{\sqrt[ 3 ]{ x }-1}$
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第4問〜媒介変数で表された極方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、原点を極とし、x軸の正の部分を始線とする極座標を考え
る。平面上を運動する点Pの極座標$(r,\ θ)$が、時刻$t \geqq 0$の関数として、
$r=1+t,\ \ \ θ=\log(1+t)$
で与えられるとする。時刻$t=0$にPが出発してから初めてy軸上に到着するまで
にPが描く軌跡をCとする。
(1)$\ t \gt 0$において、Pが初めてy軸上に到着するときのtの値を求めよ。
(2)C上の点のx座標の最大値を求めよ。
(3)Cの長さを求めよ。
(4)Cを座標平面上に図示せよ。
(5)Cとx軸とy軸で囲まれた部分の面積を求めよ。

2022上智大学理系過去問
この動画を見る 

福田の数学〜明治大学2024全学部統一III第3問〜外サイクロイド曲線と曲線の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3} a\gt 0$とする。座標平面で、原点$O$を中心とする半径$a$の定円を$C_1$とし、$C_1$と外接する半径$a$の円を$C_2$とする。円$C_2$が定円$C_1$と外接しながらすべることなく転がるとき、$C_2$上の定点$P$が描く曲線を考えたい。始めに$C_2$の中心が$(2a,0)$にあり、$P$が$(a,0)$にあるとする。$C_2$の中心が点$(2a,0)$から原点$O$を中心に反時計回りに$θ$だけ回転した位置にきたとき、$C_1$と$C_2$の接点を通る$C_1$と$C_2$の共通の接線を$l_θ$とする。$l_θ$の方程式は$a=(\boxed{ア})x+(\boxed{イ})y$である。このとき、$P$は直線$l_θ$に関して$(a,0)$と対称な点であるので、$P$の座標を$(x,y)$とすると、$P$の軌跡は$θ$を媒介変数として$x=2a(\boxed{ウ})cosθ+a, y=2a(\boxed{ウ})sinθ$と表される。
$x$と$y$をそれぞれ$θ$で微分すると$\frac{dx}{dθ}=2a(\boxed{エ}),\frac{dy}{dθ}=2a(\boxed{オ})$となるので、$θ$が0から2まで動くとき、$P$が描く曲線の長さは$\boxed{カキ}a$である。
この動画を見る 

高専数学 微積I #226(1) 媒介変数表示の面積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq 1$とする.
曲線$x=t^2,y=t^2-2t+1$
$x$軸,$y$軸で囲まれた図形の
面積$S$を求めよ.
この動画を見る 

福田の数学〜上智大学2021年理工学部第1問〜双曲線の方程式と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 媒介変数表示
$x=\frac{2}{\cos\theta}, y=3\tan\theta+1$
で表される図形Cを考える。

(1)Cは頂点$(±\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ })$、焦点$(±\sqrt{\boxed{\ \ ウ\ \ }},\ \boxed{\ \ エ\ \ })$、
漸近線$y=±\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}x+\boxed{\ \ キ\ \ }$をもつ双曲線である。
(2)双曲線Cと直線$x=4$は、2点$(4,\ \boxed{\ \ ク\ \ }±\boxed{\ \ ケ\ \ }\sqrt{\boxed{\ \ コ\ \ }})$
で交わる。\\
(3)双曲線Cと直線x=4で囲まれる部分をy軸の周りに1回転\\
させてできる立体の体積は\ \boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}\ \pi である。
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 
PAGE TOP