中学受験算数「資料の活用⑤(最頻値と中央値)」小学4年生~6年生対象【毎日配信】※概要欄をご確認下さい。 - 質問解決D.B.(データベース)

中学受験算数「資料の活用⑤(最頻値と中央値)」小学4年生~6年生対象【毎日配信】※概要欄をご確認下さい。

問題文全文(内容文):
例1 8人の生徒に10点満点の単語テストを実施したら、 以下のようになりました。 10点 8点 7点 7点 8点 10点 3点 7点
(1)最頻値を求めなさい。

(2) 中央値を求めなさい。


例2 次の図はあるクラスの男子20人の体重をヒストグラムで 表したものです。


(1)最頻値を求めなさい。

(2) 中央値の含まれる階段を答えなさい。

*図は動画内参照
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例1 8人の生徒に10点満点の単語テストを実施したら、 以下のようになりました。 10点 8点 7点 7点 8点 10点 3点 7点
(1)最頻値を求めなさい。

(2) 中央値を求めなさい。


例2 次の図はあるクラスの男子20人の体重をヒストグラムで 表したものです。


(1)最頻値を求めなさい。

(2) 中央値の含まれる階段を答えなさい。

*図は動画内参照
投稿日:2021.12.27

<関連動画>

福田の数学〜早稲田大学2024社会科学部第3問〜集合と数列

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$n$を$n \geqq 3$である自然数とする。相異なる$n$個の正の数を小さい順に並べた集合$S=${ $a_{ 1 },a_{ 2 }・・・,a_{ n } $}を考える。$a_{ 1 }=k$とするとき、次の問いに答えよ。
(1)$a_{ i }-a_{ 1 }$$(i=2,3,・・・,n)$がすべての$S$の要素となるとき、$a_{ 2 }$を求めよ。
(2)(1)のとき、$a_{ n }$を$n$の式で表せ。
(3)$\frac{a_{ i }}{a_{ 1 }}$$(i=2,3,・・・,n)$がすべての$S$の要素となるとき、$a_{ n }$を$n$の式で表せ。
この動画を見る 

連立3元3次方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\lt y\lt z$とする.これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+z=6 \\
x^2+y^2+z^2=38 \\\
x^3+y^3+z^3=144
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【数Ⅰ】【データの分析】変量変換1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
変量xのデータの平均値$\bar{x}$が35、分散$S_{x}^2$が16であるとする。この時、次の式によって得られる新しい変量yのデータについて、平均$\bar{y}$,分散$S_{y}^2$,標準偏差$S_{y}$を求めよ。
(1)$y=x-10$
(2)$y=3x$
(3)$y=-\frac{1}{2}x+6$

あるクラスの生徒を対象に100点満点の試験を行ったところ,平均値は68点,分散は36であった。得点調整のため,生徒全員の得点を2.5倍して,更に30点を加えたとき,得点調整後の平均値,分散,標準偏差を求めよ。
この動画を見る 

福田のおもしろ数学333〜整数部分と小数部分の積に関する方程式の解

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$$次の方程式を満たすxを求めよ。[ x ]はxの整数部分、( x )はxの小数部分を表す。$$
$$[ x ]\cdot( x )=2024x$$
この動画を見る 

【数Ⅰ】【2次関数】x²+y²=1 のときx²ーy²+2xの最大値と最小値を求めよ。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
x²+y²=1 のときx²ーy²+2xの最大値と最小値を求めよ。
この動画を見る 
PAGE TOP