大学入試問題#504「ひたすら積分」 #京都工芸繊維大学 (2012) #定積分 - 質問解決D.B.(データベース)

大学入試問題#504「ひたすら積分」 #京都工芸繊維大学 (2012) #定積分

問題文全文(内容文):
$a \gt 0$
$\displaystyle \frac{\displaystyle \int_{1}^{e} log(ax) dx}{\displaystyle \int_{1}^{e} x\ dx}=\displaystyle \int_{1}^{e}\displaystyle \frac{ log(ax)}{x} dx$を満たすとき
$log\ a$の値を求めよ。

出典:2012年京都工芸繊維大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$\displaystyle \frac{\displaystyle \int_{1}^{e} log(ax) dx}{\displaystyle \int_{1}^{e} x\ dx}=\displaystyle \int_{1}^{e}\displaystyle \frac{ log(ax)}{x} dx$を満たすとき
$log\ a$の値を求めよ。

出典:2012年京都工芸繊維大学 入試問題
投稿日:2023.04.13

<関連動画>

福田の数学〜東京工業大学2023年理系第1問〜定積分の値の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数$\displaystyle\int_0^{2023}\frac{2}{x+e^x}dx$の整数部分を求めよ。

2023東京工業大学理系過去問
この動画を見る 

大学入試問題#180 秋田県立大学(2004) 定積分 ウォリス積分②

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}(1-x^2)^4\ dx$

出典:2004年秋田県立大学 入試問題
この動画を見る 

#筑波大学(2020) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \sin\theta\ \cos2\theta\ d\theta$

出典:2020年筑波大学
この動画を見る 

大学入試問題#203 琉球大学(2020) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#琉球大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{log2}^{log3}\displaystyle \frac{xe^x}{(e^x-1)^2}dx$を計算せよ

出典:2020年琉球大学 入試問題
この動画を見る 

大学入試問題#410「爽やかな積分問題」 産業医科大学2017 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{1} \sqrt{ -1+\displaystyle \frac{2}{x} }\ dx$

出典:2017年産業医科大学 入試問題
この動画を見る 
PAGE TOP