【数学Ⅱ】複素数『1の3乗根ω』の性質と問題演習 - 質問解決D.B.(データベース)

【数学Ⅱ】複素数『1の3乗根ω』の性質と問題演習

問題文全文(内容文):
$x^3-1=0$の虚数解の1つを$\omega$とするとき、次の式の値を求めよ。
(1)
$\omega^4+\omega^2+1$

(2)
$1+\displaystyle \frac{1}{\omega}+\displaystyle \frac{1}{\omega^2}$
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$x^3-1=0$の虚数解の1つを$\omega$とするとき、次の式の値を求めよ。
(1)
$\omega^4+\omega^2+1$

(2)
$1+\displaystyle \frac{1}{\omega}+\displaystyle \frac{1}{\omega^2}$
投稿日:2021.08.02

<関連動画>

2021一橋大 素数の個数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1000$以下の素数は$250$個以下であることを示せ.

2021一橋大過去問
この動画を見る 

複素関数論⑯ コーシーの積分定理の応用 *8(1)(2)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$ \displaystyle \int_{c}^{} \dfrac{1}{z-2i}\ dz$

(1)$c:$原点を中心とする単位円を求めよ.
(2)$c:-1,1,3i$でつくられる三角形の周を求めよ.
この動画を見る 

長崎大 複素数と整数の融合問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$を整数とする.
$\alpha=m+\sqrt7 ni$,
$\alpha^3=225+2\sqrt7 i$
(1)$x^3=1$を解け.
(2)$m,n$を求めよ.
(3)$Z^3=225+2\sqrt7 i$を解け.

長崎大過去問
この動画を見る 

複素数の5次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.($\sin,\cos$は使わない)
$x^5=i$
この動画を見る 

うまい方法

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^3+2x^2+3x+4=0$の3つの解を$ \alpha,\beta,\delta $とする.
$(\alpha^4-1)(\beta^4-1)(\delta^4-1)$の値を求めよ.
この動画を見る 
PAGE TOP