2022乗 - 質問解決D.B.(データベース)

2022乗

問題文全文(内容文):
$(5+2 \sqrt 6)^{1011}(\sqrt 3 - \sqrt 2)^{2022}$
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(5+2 \sqrt 6)^{1011}(\sqrt 3 - \sqrt 2)^{2022}$
投稿日:2022.06.22

<関連動画>

指数・対数連立不等式 京都府立大

アイキャッチ画像
単元: #2次関数#2次方程式と2次不等式#2次関数とグラフ#指数関数と対数関数#指数関数#対数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a>0,a \neq 1$とする.
$\begin{eqnarray}
\left\{
\begin{array}{l}
a^{2x-4}-1<a^{x+1}-a^{x-5} \\
2\log_a(x-2)\geqq \log_a(x-2)+\log_a5
\end{array}
\right.
\end{eqnarray}$
連立不等式を解け.
この動画を見る 

これ解けましたか?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$5^x=7^y=1225$
$\displaystyle \frac{xy}{x+y}$の値を求めよ
この動画を見る 

指数の計算

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^x=3^y$
$4^{\frac{x}{y}} + 3^{\frac{y}{x}}=?$
この動画を見る 

大学入試問題#241 早稲田大学(2014) #指数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
関数$f(x)=(27^x+\displaystyle \frac{1}{27^x})-5(9^x+\displaystyle \frac{1}{9^x})$
$-5(3^x+\displaystyle \frac{1}{3^x})+1$の最小値と、そのときの$x$の値を求めよ。

出典:2014年早稲田大学 入試問題
この動画を見る 

【数Ⅱ】【指数関数と対数関数】対数計算1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を簡単にせよ。
(1) $(\log_{2} 9+\log_{8} 3)(\log_{3} 2+\log_{9} 4)$
(2) $\log_{4} 3・\log_{9} 25・\log_{5} 8)$
(3) $\log_{2} 10・\log_{5} 10-(\log_{2} 5+\log_{5} 2)$

$a=\log_{2} 3$,$b=\log_{2} 5$とするとき、次の式をa,bで表せ。
(1) $\log_{2} 15$
(2) $\log_{2} 75$
(3) $\log_{4} 45$

$p=\log_{a} x$,$q=\log_{a} y$,$r=\log_{a} z$であるとき、次の各式をp,q,rで表せ。
ただし、a,x,y,zは正の数とし、a≠1とする。
(1) $\log_{a} x²y³z⁴$
(2) $\log_{a} \frac{x}{(yz)^2}$
(3) $\log_{a} \frac{x\sqrt{y}}{\sqrt[3]{z}}$

$a=\log_{15} 3$, $b=\log_{3} 2$とするとき、次の式をa,bで表せ。
(1) $\log_{15} 2$
(2) $\log_{15} 5$
この動画を見る 
PAGE TOP