問題文全文(内容文):
$f(x)=8^x-4^{x+\frac{1}{2}}+2^x+\dfrac{23}{27}$
$-2\leqq x\leqq a(a\gt -2)$における$f(x)$の最大値が$1$となる$a$の範囲を求めよ.
2020金沢大過去問
$f(x)=8^x-4^{x+\frac{1}{2}}+2^x+\dfrac{23}{27}$
$-2\leqq x\leqq a(a\gt -2)$における$f(x)$の最大値が$1$となる$a$の範囲を求めよ.
2020金沢大過去問
単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=8^x-4^{x+\frac{1}{2}}+2^x+\dfrac{23}{27}$
$-2\leqq x\leqq a(a\gt -2)$における$f(x)$の最大値が$1$となる$a$の範囲を求めよ.
2020金沢大過去問
$f(x)=8^x-4^{x+\frac{1}{2}}+2^x+\dfrac{23}{27}$
$-2\leqq x\leqq a(a\gt -2)$における$f(x)$の最大値が$1$となる$a$の範囲を求めよ.
2020金沢大過去問
投稿日:2021.04.01