【数学Ⅰ/三角比】三角比の最大・最小(二次関数) - 質問解決D.B.(データベース)

【数学Ⅰ/三角比】三角比の最大・最小(二次関数)

問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、$y=3-2\sin^2\theta-\cos\theta$の最大値と最小値を求めよ。
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、$y=3-2\sin^2\theta-\cos\theta$の最大値と最小値を求めよ。
投稿日:2021.12.25

<関連動画>

π<3 .3 示せ(類)浜松医科大学2022

アイキャッチ画像
単元: #式と証明#三角関数#恒等式・等式・不等式の証明#三角関数とグラフ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \pi<3.3$を示せ.

2022浜松医科大過去問
この動画を見る 

福田の数学〜立教大学2021年経済学部第1問(2)〜円に内接する四角形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)円Cに内接する四角形PQRSにおいて、対角線PRは円Cの中心Oを通る。
また、各辺の長さは、$PQ=1, QR=8, RS=4, SP=7$であり、
角Pの大きさを$\theta$とする。ただし、$0 \lt \theta \lt \pi$とする。
このとき円Cの直径は$\boxed{イ},\cos\theta=\boxed{ウ}$である。

2021立教大学経済学部過去問
この動画を見る 

【わかりやすく】三角不等式(2次不等式を利用)【数学Ⅰ三角比】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、次の不等式を解け。
$2\cos^2\theta-\cos\theta \lt 0$
この動画を見る 

福田のわかった数学〜高校3年生理系080〜グラフを描こう(2)三角関数のグラフ

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(2)
$y=\cos2x-2\cos x  (0 \leqq x \leqq 2\pi)$
のグラフを描け。ただし凹凸は調べなくてよい。
この動画を見る 

【高校数学】三角関数の性質の裏技~先生には怒られるかもしれません~ 4-3.5【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角関数の性質の裏技紹介動画です
この動画を見る 
PAGE TOP