【数B】【数列】数学的帰納法3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数B】【数列】数学的帰納法3 ※問題文は概要欄

問題文全文(内容文):
(1) $n$は自然数とする。
$5^{n+1}+6^{2n-1}$は31で割り切れることを、
数学的帰納法によって証明せよ。
(2) $n$は2以上の自然数とする。
$2^{3n}-7n-1$は49で割り切れることを、
数学的帰納法によって証明せよ。
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) $n$は自然数とする。
$5^{n+1}+6^{2n-1}$は31で割り切れることを、
数学的帰納法によって証明せよ。
(2) $n$は2以上の自然数とする。
$2^{3n}-7n-1$は49で割り切れることを、
数学的帰納法によって証明せよ。
投稿日:2025.04.26

<関連動画>

数学「大学入試良問集」【13−11 ガウス記号とその戦略】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
実数$x$に対し、$[x]$を$x$以下の最大の整数とする。
たとえば、$[2]=2,\left[ \dfrac{ 7 }{ 5 } \right]=1$である。
数列$\{a_n\}$を$a_k=\left[ \dfrac{ 3k }{ 5 } \right](k=1,2,・・・)$と定めるとき、以下の問いに答えよ。
(1)$a_1,a_2,a_3,a_4,a_5$を求めよ。
(2)$a_{k+5}=a_k+3(k=1,2,・・・)$を示せ。
(3)自然数$n$に対して、$\displaystyle \sum_{k=1}^{5n} a_k$を求めよ。
この動画を見る 

【概要欄に正確な文章と説明の補足】大学入試問題#76 京都大学(2007) 数列と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x,y$:異なる正の実数
$a_1=0$
$a_{n+1}=x a_n=s\ a_n+y^{n+1}$のとき
$\displaystyle \lim_{ n \to \infty }a_n \lt \infty$となるような$(x,y)$の範囲を図示せよ。

出典:2007年京都大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第2問〜玉を取り出す確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 赤玉と黒玉が入っている袋の中から無作為に玉を1つ取り出し、取り出した玉を袋に戻した上で、取り出した玉と同じ色の玉をもう1つ袋に入れる操作を繰り返す。以下の問いに答えよ。
(1)初めに袋の中に赤玉が1個、黒玉が1個入っているとする。n回の操作を行ったとき、赤玉をちょうどk回取り出す確率を$P_n(k)$(k=0,1,...,n)とする。
$P_1(k)$と$P_2(k)$を求め、さらに$P_n(k)$を求めよ。
(2)初めに袋の中に赤玉がr個、黒玉がb個(r≧1, b≧1)入っているとする。n回の操作を行ったとき、k回目に赤玉が、それ以外ではすべて黒玉が取り出される確率$Q_n(k)$(k=1,2,..., n)とする。$Q_n(k)$はkによらないことを示せ。

2023早稲田大学理工学部過去問
この動画を見る 

【高校数学】 数B-88 漸化式②

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の条件で定められる数列$\{a_n\}$の一般項を求めよう.

①$a_1=1,a_{n+1}=a_n=4n$

②$a_1=2,a_{n+1}=a_n+3^n$
この動画を見る 

福田の数学〜慶應義塾大学看護医療学部2025第2問(3)〜数学的帰納法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

(3)自然数$n$に対して、

$3^n-2n-1$が

$4$の倍数であることの数学的帰納法を

用いた証明を記述しなさい。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 
PAGE TOP