【数Ⅲ】区分求積法【グラフの面積とはなにか。和が積分になる驚きの仕組み】 - 質問解決D.B.(データベース)

【数Ⅲ】区分求積法【グラフの面積とはなにか。和が積分になる驚きの仕組み】

問題文全文(内容文):
(1)$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \left(\dfrac{k^2}{n^3}+\dfrac{3k}{n^2}+\dfrac{1}{n} \right)$を求めよ.
(2)$\displaystyle \lim_{n \to \infty}\displaystyle \sum_{k=1}^n \dfrac{1}{2k+n}$を求めよ.
(3)$\displaystyle \lim_{n \to \infty}\displaystyle \sum_{k=n+1}^{3n}\dfrac{1}{\sqrt{kn}}$を求めよ.
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
(1)$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \left(\dfrac{k^2}{n^3}+\dfrac{3k}{n^2}+\dfrac{1}{n} \right)$を求めよ.
(2)$\displaystyle \lim_{n \to \infty}\displaystyle \sum_{k=1}^n \dfrac{1}{2k+n}$を求めよ.
(3)$\displaystyle \lim_{n \to \infty}\displaystyle \sum_{k=n+1}^{3n}\dfrac{1}{\sqrt{kn}}$を求めよ.
投稿日:2023.03.26

<関連動画>

大学入試問題#119 横浜国立大学(2020) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{4}}\displaystyle \frac{log(\sin\ x)}{\tan\ x}\ dx$を計算せよ。

出典:2020年横浜国立大学 入試問題
この動画を見る 

【高校数学】ワイエルシュトラス置換って何!?毎日積分81日目~47都道府県制覇への道~【㉔三重】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【三重大学 2009】
$\displaystyle \int_\frac{π}{3}^{\frac{π}{2}}\frac{1}{1+sinθ-cosθ}dθ$
この動画を見る 

【高校数学】19回目にして遂に計算ミス発生!?毎日積分76日目~47都道府県制覇への道~【⑲大阪】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【大阪大学 2023】
$n$を$2$以上の自然数とする。
(1) $0≦x≦1$の時、次の不等式が成り立つことを示せ。
$\displaystyle \frac{1}{2}x^n≦(-1)^n\{\frac{1}{x+1}-1-\sum_{k=2}^n(-1)^{k-1}\}≦x^n-\frac{1}{2}x^{n+1}$
(2) $\displaystyle a_n=\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$とするとき、次の極限値を求めよ。
$\displaystyle \lim_{n\to \infty} (-1)^nn(a_n-log2)$
この動画を見る 

#茨城大学後期2024#定積分_6#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{4} \displaystyle \frac{2}{x^2-1} dx$

出典:2024年茨城大学後期
この動画を見る 

大学入試問題#252 茨城大学(2012) #定積分

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#対数関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{log2}e^{|x|}e^xdx$を計算せよ。

出典:2012年茨城大学 入試問題
この動画を見る 
PAGE TOP