【理数個別の過去問解説】2016年度京都大学 数学 文系第1問解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2016年度京都大学 数学 文系第1問解説

問題文全文(内容文):
京都大学(文系)2016年第1問
xy平面内の領域 $x²+y²≦2, |x|≦1$で,曲線$C:y=x³+x²-x $の上側にある部分の面積を求めよ。
チャプター:

0:00 オープニング
0:05 問題文
0:13 問題文の図示(早送り)
0:37 問題解説
2:33 名言

単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
京都大学(文系)2016年第1問
xy平面内の領域 $x²+y²≦2, |x|≦1$で,曲線$C:y=x³+x²-x $の上側にある部分の面積を求めよ。
投稿日:2020.08.27

<関連動画>

福田の数学〜早稲田大学2022年人間科学部第5問〜2次関数の区間の動く最大最小

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}$aを実数とする。関数
$f(x)=-x^2+6x(a-2 \leqq x \leqq a)$
の最大値をg(a)、最小値をh(a)とする。このとき、
$ab$平面において$b=g(a)$のグラフとa軸によって囲まれる部分の面積は$\boxed{\ \ ア\ \ }$であり、
ab平面において$b=h(a)$のグラフとa軸によって囲まれる部分の面積は$\boxed{\ \ イ\ \ }$である。

2022早稲田大学人間科学部過去問
この動画を見る 

公式を使う?使わない?富山大 積分基本問題

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)#富山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023富山大学
a>0
$f(x)=x^3-6x$,$g(x)=-3x+a$
f(x)とg(x)は2つの共有点をもつ
①aの値
②f(x)とg(x)とで囲まれる面積
この動画を見る 

数学「大学入試良問集」【12−5 3次関数と接線】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
3次曲線$C:y=x^3-4x$とその上の点$P(2,0)$について考える
点$P$で曲線$C$に接する直線が曲線$C$と交わる点を$Q$とする。
また$R$は、$P$と異なる曲線$C$上の点であって、そして直線$PR$は曲線$C$に点$R$で接するものとする。
このとき、次の各問いに答えよ。
(1)点$Q$の$x$座標を求めよ。
(2)点$R$の$x$座標を求めよ。
(3)直線$PR$と曲線$C$で囲まれた部分の面積を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2024環境情報学部第4問〜球の一部の体積と距離の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)$xyz$空間において、不等式 $x^2+y^2+z^2\leqq |x|$ が定める立体の体積は$\frac{\fbox{アイ}}{\fbox{ウエ}}\pi$である。また、原点を中心とする球面がこの立体と共有点をもつとき、球面の半径の最大値は$\fbox{オカ}$である。
(2)$xyz$空間において、不等式 $x^2+y^2+z^2\leqq|x|+|y|$ が定める立体の体積は$\frac{\fbox{キク}}{\fbox{ケコ}}\pi$である。また、原点を中心とする球面がこの立体と共有点をもつとき、球面の半径の最大値は$\sqrt{\fbox{サシ}}$ である。
(3)$xyz$ 空間において、不等式 $x^2+y^2+z^2\leqq$$ |x| + |y| + |z| - \frac{1}{4}$ が定める立体の体積は$(\fbox{スセ}$$+\frac{\fbox{ソタ}}{\fbox{チツ}}\sqrt{\fbox{テト}})\pi$ である。また、原点を中心とする球面がこの立体と共有点をもつとき、球面の半径の最大値は $\frac{\fbox{ナニ}}{\fbox{ヌネ}}\sqrt{\fbox{ノハ}}$ $+\frac{\fbox{ヒフ}}{\fbox{ヘホ}}\sqrt{\fbox{マミ}}$ である。(ただし、$\fbox{ノハ} \le \fbox{マミ}$ とする。)
この動画を見る 

【数Ⅱ】【微分法と積分法】3次関数と接線で囲まれた図形の面積 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線y=x³-5x²+5x+8と、その曲線上の点(3,5)のおける接線で囲まれた図形の面積Sを求めよ。
この動画を見る 
PAGE TOP