光文社新書「中学の知識でオイラー公式がわかる」Vol 13 eとは何か後編 - 質問解決D.B.(データベース)

光文社新書「中学の知識でオイラー公式がわかる」Vol 13 eとは何か後編

問題文全文(内容文):
①$e=\displaystyle \lim_{ n \to \infty } (1+\displaystyle \frac{1}{n})^n \lt 3$
   $\displaystyle \lim_{ h \to 0 } (1+h)^{\displaystyle \frac{1}{h}}$

②$y=e^x$ $y^1=e^x$

③$y=e^x$
 $(0,1)$における接線の傾きが1

④$(log_ex)^1=\displaystyle \frac{1}{x}$
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$e=\displaystyle \lim_{ n \to \infty } (1+\displaystyle \frac{1}{n})^n \lt 3$
   $\displaystyle \lim_{ h \to 0 } (1+h)^{\displaystyle \frac{1}{h}}$

②$y=e^x$ $y^1=e^x$

③$y=e^x$
 $(0,1)$における接線の傾きが1

④$(log_ex)^1=\displaystyle \frac{1}{x}$
投稿日:2020.01.16

<関連動画>

16和歌山県教員採用試験(数学:6番 対数の不等式)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$2\log_3 x-4\log_x 27 \leqq 5$を解け.
この動画を見る 

指数法則

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$10^a=4$のとき
$10^{1+2a}$=

ア 26 イ 40 ウ 160 エ 109
この動画を見る 

#47 数検1級1次 過去問 二項定理

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#微分法と積分法#整式の除法・分数式・二項定理#不定積分・定積分#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$(1+x)^n$を$c_0+c_1x+・・・+c_nx^n$とおく。
$\displaystyle \sum_{k=1}^n(-1)^k\displaystyle \frac{c_k}{k+1}$の値を求めよ。
この動画を見る 

極限

アイキャッチ画像
単元: #微分法と積分法#平均変化率・極限・導関数
指導講師: 数学を数楽に
この動画を見る 

福田の数学〜対数関数の最大値2通りの解を紹介〜慶應義塾大学2023年商学部第1問(1)〜対数関数の最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)2つの正の実数x,yについて、$xy^2=10$のとき、$\log_{ 10 } x$,$\log_{ 10 } y$の最大値は$\dfrac{\fbox{ア}}{{\fbox{イ}}}$である。

2023慶應義塾大学商学部過去問

この動画を見る 
PAGE TOP