大学入試問題#793「教科書の章末問題!?」 #室蘭工業大学(2018) #数列 - 質問解決D.B.(データベース)

大学入試問題#793「教科書の章末問題!?」 #室蘭工業大学(2018) #数列

問題文全文(内容文):
$a_1=\displaystyle \frac{1}{2}, a_{n+1}=\displaystyle \frac{(n+1)a_n}{n+3^na_n}$を満たす数列$\{a_n\}$を求めよ。

出典:2018年室蘭工業大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#室蘭工業大学
指導講師: ますただ
問題文全文(内容文):
$a_1=\displaystyle \frac{1}{2}, a_{n+1}=\displaystyle \frac{(n+1)a_n}{n+3^na_n}$を満たす数列$\{a_n\}$を求めよ。

出典:2018年室蘭工業大学 入試問題
投稿日:2024.04.15

<関連動画>

大学入試問題#277 横浜国立大学後期(2012) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1}(1-x^2)e^{-2x}dx$を求めよ

出典:2010年横浜国立大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2025教育学部第1問(2)〜三角形の外心と垂心と点の回転

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)座標平面上の$3$点

$A(1,0),B(0,-1),C(-1,1)$を

頂点とする三角形$ABC$を考える。

三角形$ABC$をその外心を中心として反時計回りに

$\dfrac{\pi}{3}$だけ回転することで得られる三角形の

垂心の座標を求めよ。

なお、三角形の$3$頂点から対辺または

その延長に下ろした$3$本の垂線は一点で交わり、

その交点を三角形の垂心という。

$2025$年早稲田大学教育学部第1問過去問題
この動画を見る 

福田の数学〜早稲田大学2023年商学部第1問(1)〜面積計算と不等式の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(1)$n$を2以上の整数とする。整数$k$$\in$$\left\{1,2,...,n\right\}$に対し、$y$軸に平行な直線$x$=$2^{k-1}$と曲線$y$=$\log_2 x$の交点を$P_k$とする。このとき、線分$P_1P_2$, $P_2P_3$, ..., $P_{n-1}P_n$と直線$x$=$2^{n-1}$および$x$軸で囲まれる図形の面積を$S(n)$とする。不等式
$\displaystyle\frac{S(n)}{2^n}$≧2023
を満たす最小の$n$は$\boxed{\ \ ア\ \ }$である。
この動画を見る 

#千葉大学2023#定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
下記の定積分を解け
$\displaystyle \int_{0}^{1} xe^{-2x} dx$

出典:2023年千葉大学
この動画を見る 

大学入試問題#126 慶應大学医学部(2005) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int (\displaystyle \frac{2}{x^3}+\displaystyle \frac{1}{x})\sin\ x\ dx$を計算せよ。

出典:2005年慶應義塾大学 入試問題
この動画を見る 
PAGE TOP