整数問題 愛知高校 - 質問解決D.B.(データベース)

整数問題 愛知高校

問題文全文(内容文):
1から9までの自然数から異なる2つを選びa,bとする。(a<b)
$\frac{1}{a} - \frac{1}{b}$の値が最も小さくなるa,bを求めよ。

愛知高等学校
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1から9までの自然数から異なる2つを選びa,bとする。(a<b)
$\frac{1}{a} - \frac{1}{b}$の値が最も小さくなるa,bを求めよ。

愛知高等学校
投稿日:2021.12.09

<関連動画>

福田のおもしろ数学320〜完全平方数となる条件

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
自然数 $n$ に対して $n \cdot 2^n +1$ が平方数となるような $n$ をすべて求めて下さい。
この動画を見る 

福田のおもしろ数学146〜3m+5nで作れない自然数を求める

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$X$=$3m$+$5n$ ($m$, $n$は0以上の整数)の形で表せない自然数$X$を全て求めよ。
この動画を見る 

福田のおもしろ数学462〜2n+1角形の頂点と辺に異なる整数を割り当てて辺上の合計を等しくする方法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$2n+1$個の頂点をもつ多角形がある。

この多角形の頂点と辺の中点に数

$1,2,3,\cdots,4n+2$をすべて使用してラベルをつけ、

各辺に割り当てられた

$3$つの数の和が等しくなるようにせよ。
    
この動画を見る 

福田の1.5倍速演習〜合格する重要問題016〜京都大学2016年度理系数学第2問〜素数の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学的帰納法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
素数p,qを用いて
$p^q+q^p$
と表される素数を全て求めよ。

2016京都大学理系過去問
この動画を見る 

負の数の余りを求めよ!~余りについて~

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
\begin{eqnarray}
(1) -15 \div 3 \,の商と余りを求めよ
\end{eqnarray}
この動画を見る 
PAGE TOP