【中学数学】標本調査の問題演習~標準問題~【中3数学】 - 質問解決D.B.(データベース)

【中学数学】標本調査の問題演習~標準問題~【中3数学】

問題文全文(内容文):
(1)
白と黒の玉が合わせて500個入った袋がある。
この袋の中から30個を無作為に取り出すと、そのうちの12個が白い玉だった。袋の中の白い球はおよそ何個と表されるか?

(2)
池にいる魚の数を調べる。
1度20匹捕まえて印をつけ池に戻し
1週間後、今度は60匹の魚を捕まえたところ
そのうち4匹の魚に印がついていました。
この池には何匹の魚がいると考えられる?
単元: #数学(中学生)#中3数学#統計的な推測#標本調査
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)
白と黒の玉が合わせて500個入った袋がある。
この袋の中から30個を無作為に取り出すと、そのうちの12個が白い玉だった。袋の中の白い球はおよそ何個と表されるか?

(2)
池にいる魚の数を調べる。
1度20匹捕まえて印をつけ池に戻し
1週間後、今度は60匹の魚を捕まえたところ
そのうち4匹の魚に印がついていました。
この池には何匹の魚がいると考えられる?
投稿日:2025.01.05

<関連動画>

【数B】【確率分布と統計的な推測】正規分布8 ※問題文は概要欄

アイキャッチ画像
単元: #確率分布と統計的な推測#統計的な推測#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある植物の種子の発芽率は80%であるという。この植物の種子を900個まいたとき、次の問いに答えよ。
(1) 750個以上の種子が発芽する確率を求めよ。
(2) 900個のうちn個以上の種子が発芽する確率が80%以上となるようなnの最大値を求めよ。
この動画を見る 

【数B】【確率分布と統計的な推測】推定 ※問題文は概要欄

アイキャッチ画像
単元: #確率分布と統計的な推測#統計的な推測#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある町で、 1 つの政策に対する賛否を調べる世論調査を、任意に抽出した有権者 400 人に対して行ったところ、政策支持者は 216 人であった。この町の有権者 1 万人のうち、この政策の支持者は何人ぐらいいると推定されるか。95% の信頼度で推定せよ。

数千枚の答案の採点をした。信頼度 95% 、信頼区間の幅 4 点以下でその平均点を推定したいとすると、少なくとも何枚以上の答案を抜き出さなければならないか。また、信頼区間の幅 2 点以下で推定するとすればどうか。ただし、従来の経験で点数の標準偏差は 15 点としてよいことはわかっているものとする。

(1) 確率変数 $Z$ が標準正規分布に従うとき、$P(|Z|≦\square)=0.99$ が成り立つ。 $\square$ に当てはまる最も適切な値を、次の$①〜④$のうちから1つ選べ。
$①1.75 ②1.96 ③2.33 ④2.58$

(2) ある試験を受けた高校生の中から、100 人を任意に選んだところ、平均点は 58.3 点であった。母標準偏差を 13.0 点として、母平均を信頼度 99% で推定せよ。
この動画を見る 

【数B】【確率分布と統計的な推測】二項分布 ※問題文は概要欄

アイキャッチ画像
単元: #確率分布と統計的な推測#統計的な推測#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A,Bの2人が,白玉2個と赤玉3個の入っている袋から,A,Bの順に玉を1個ずつ取り出していき,最初に白玉を取り出した人を勝ちとする。ただし,取り出した玉はもとに戻さないものとする。この勝負を20回行うとき,Aが勝つ回数Xの期待値と標準偏差を求めよ。
この動画を見る 

仮説検定を分かりやすく!概念から計算まで

アイキャッチ画像
単元: #確率分布と統計的な推測#統計的な推測#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
表が10回中8回出るコインは「表が出やすい」コイン?
この動画を見る 

【数B】【確率分布と統計的な推測】正規分布1 ※問題文は概要欄

アイキャッチ画像
単元: #確率分布と統計的な推測#統計的な推測#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率変数Xのとる値の範囲が-1≦x≦1で、その確率密度関数f(x)が f(x)-1-x(-1≦x≦1) で与えられるとき、次の確率を求めよ。
(1) P(0 ≦ X ≦ 0.25)
(2) P(X≦0.25)
(3) P(- 0.5 ≦ X ≦ 0.3)

確率変数Xのとる値の範囲が0≤x≤10で、その確率密度関数がkを定数として f(x) = kx(10 - x) (0≦x≦10) で与えられるとする。
このとき、kの値は□であり、確率 P(3 ≦ X ≦ 7) は□となる。
この動画を見る 
PAGE TOP