微分法と積分法 数Ⅱ定積分:1/6公式の使い方【烈's study!がていねいに解説】 - 質問解決D.B.(データベース)

微分法と積分法 数Ⅱ定積分:1/6公式の使い方【烈's study!がていねいに解説】

問題文全文(内容文):
$\displaystyle \int_{α}^{ β } (x-α)(x-β)dx=-\dfrac{1}{6}(β-α)^3$を用いて、次の定積分を求めよ。

(1)$\displaystyle \int_{-1}^{ 2 } (x^2-x-2)dx$

(2)$\displaystyle \int_{1-\sqrt{2} }^{1+\sqrt{2}} (x^2-2x-1)dx$

(3)$\displaystyle \int_{3}^{ 4 } (14x-24-2x^2)dx$
チャプター:

0:00 オープニング
0:05 問題文
0:11 1/6公式について
3:02 (1)解説
3:47 (2)解説
5:14 (3)解説
6:17 エンディング

単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \int_{α}^{ β } (x-α)(x-β)dx=-\dfrac{1}{6}(β-α)^3$を用いて、次の定積分を求めよ。

(1)$\displaystyle \int_{-1}^{ 2 } (x^2-x-2)dx$

(2)$\displaystyle \int_{1-\sqrt{2} }^{1+\sqrt{2}} (x^2-2x-1)dx$

(3)$\displaystyle \int_{3}^{ 4 } (14x-24-2x^2)dx$
投稿日:2024.08.05

<関連動画>

【短時間でポイントチェック!!】定積分 1/6公式〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\int_{-1}^2\{(x+2)-x^2\}dx$
この動画を見る 

#日本工業大学(2021) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{4} log_2\ x\ dx$

出典:2021年日本工業大学
この動画を見る 

【高校数学】毎日積分76日目~47都道府県制覇への道~【⑲大阪】【毎日17時投稿】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
■【大阪大学 2023】
$n$を2以上の自然数とする。
(1)$0\leqq x\leqq 1$の時、次の不等式が成り立つことを示せ。
$\dfrac{1}{2}x^n\leqq (-1)^n\left[\dfrac{1}{x+1}-1-\displaystyle \sum_{k=2}^n(-1)^{k-1}\right]\leqq x^n-\dfrac{1}{2}x^{n+1}$
(2)$a_n=\displaystyle \sum_{k=1}^n\dfrac{(-1)^{k-1}}{k}$とするとき、次の極限値を求めよ。
$\lim_{n\to\infty}(-1)^n n(a_n-\log 2)$
この動画を見る 

#筑波大学(2016) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{1}{2}}^{2} |log\ x| dx$

出典:2016年筑波大学
この動画を見る 

#高専_3#定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} (e^x-e^{-x})^2(e^x+e^{-x}) dx$
この動画を見る 
PAGE TOP