微分法と積分法 数Ⅱ定積分:1/6公式の使い方【烈's study!がていねいに解説】 - 質問解決D.B.(データベース)

微分法と積分法 数Ⅱ定積分:1/6公式の使い方【烈's study!がていねいに解説】

問題文全文(内容文):
$\displaystyle \int_{α}^{ β } (x-α)(x-β)dx=-\dfrac{1}{6}(β-α)^3$を用いて、次の定積分を求めよ。

(1)$\displaystyle \int_{-1}^{ 2 } (x^2-x-2)dx$

(2)$\displaystyle \int_{1-\sqrt{2} }^{1+\sqrt{2}} (x^2-2x-1)dx$

(3)$\displaystyle \int_{3}^{ 4 } (14x-24-2x^2)dx$
チャプター:

0:00 オープニング
0:05 問題文
0:11 1/6公式について
3:02 (1)解説
3:47 (2)解説
5:14 (3)解説
6:17 エンディング

単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \int_{α}^{ β } (x-α)(x-β)dx=-\dfrac{1}{6}(β-α)^3$を用いて、次の定積分を求めよ。

(1)$\displaystyle \int_{-1}^{ 2 } (x^2-x-2)dx$

(2)$\displaystyle \int_{1-\sqrt{2} }^{1+\sqrt{2}} (x^2-2x-1)dx$

(3)$\displaystyle \int_{3}^{ 4 } (14x-24-2x^2)dx$
投稿日:2024.08.05

<関連動画>

#広島市立大学2024#不定積分_22#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{e^{ \frac{x}{2}}} dx$

出典:2024年広島市立大学後期 不定積分問題
この動画を見る 

大学入試問題#629「計算ミスだけ注意」 横浜国立大学後期(2023) #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$f(x)=(log\ x)^2-\displaystyle \int_{1}^{e} f(t) dt$のとき
$f(x)$を求めよ

出典:2023年横浜国立大学 入試問題
この動画を見る 

#山梨大学2013#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#山梨大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-10}^{0} \displaystyle \frac{1}{(x+11)(x+12)}$ $dx$

出典:2013年山梨大学
この動画を見る 

大学入試問題#774「基本的な良問」 横浜国立大学(1998) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e-1} \displaystyle \frac{log(log(x+1))}{x+1} dx$

出典:1998年横浜国立大学 入試問題
この動画を見る 

福田の数学〜定積分で表された関数の標準問題〜慶應義塾大学2023年環境情報学部第2問〜定積分で表された関数と共通接線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)が
$f(x)=-2x^2\displaystyle \int_{0}^{ 1 } f(t) dt-12x+\dfrac{2}{9}\displaystyle \int_{-1}^{ 0 } f(t) dt$

$g(x)=\displaystyle \int_{0}^{ 1 } (3x^2+t)g(t)dt-\dfrac{3}{4}$
を満たしている。このとき
$f(x)=\fbox{ア}x^2-12x+\fbox{イ},g(x)=\fbox{ウ}x^2+\fbox{エ}$
である。またxy平面上のy=f(x)とy=g(x)のグラフの共通接戦は$y=\fbox{オ}x+\dfrac{\fbox{カ}}{\fbox{キ}}$
である。なお、nを0または生の整数としたとき、$x^n$の不定積分は
$\displaystyle \int_{}^{}x^ndx=\dfrac{1}{n+1}x^{n+1}+C$(Cは積分定数)である。
この動画を見る 
PAGE TOP