大学入試問題#685「一言・・・むずい」 早稲田商学部(2018) #整数問題 - 質問解決D.B.(データベース)

大学入試問題#685「一言・・・むずい」 早稲田商学部(2018) #整数問題

問題文全文(内容文):
次の条件を満たす正の整数の組$(a,b,n)$をすべて求めよ。
$n \geq 2$で、$b$は素数
$a^2=b^n+225$

出典:2018年早稲田大学商学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の条件を満たす正の整数の組$(a,b,n)$をすべて求めよ。
$n \geq 2$で、$b$は素数
$a^2=b^n+225$

出典:2018年早稲田大学商学部 入試問題
投稿日:2023.12.25

<関連動画>

#奈良教育大学(2014) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} |e^x-e| dx$

出典:2014年奈良教育大学
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第1問(3)〜曲線と直線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#微分とその応用#積分とその応用#微分法#接線と法線・平均値の定理#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)曲線y=$x$$\log(x^2+1)$のx≧0の部分をCとすると、点(1, log2)におけるCの接線lの方程式はy=$\boxed{\ \ く\ \ }$である。
また、曲線Cと直線l、およびy軸で囲まれた図形の面積は$\boxed{\ \ け\ \ }$である。

2023慶應義塾大学医学部過去問
この動画を見る 

大学入試問題#117 大分大学(2007) 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x,y,z$:自然数
$x \leqq y \leqq z$
$7(x+y+z)=2(xy+yz+zx)$をみたす組$(x,y,z)$をすべて求めよ。

出典:2007年大分大学 入試問題
この動画を見る 

福田の数学〜神戸大学2022年文系第3問〜指数方程式と整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,b$を実数とし、$1 \lt a \lt b$とする。以下の問いに答えよ。

(1)x,y,zを0でない実数とする。$a^x=b^y=(ab)^z$ならば$\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$であることを示せ。
(2)$m,n$を$m \gt n$を満たす自然数とし、$\frac{1}{m}+\frac{1}{n}=\frac{1}{5}$とする。$m,n$の値を求めよ。
(3)$m,n$を自然数とし、$a^m=b^n=(ab)^5$とする。bの値をaを用いて表せ。

2022神戸大学文系過去問
この動画を見る 

福田の数学〜大阪大学2025理系第1問〜平面図形とベクトルの証明

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

平面上の三角形$OAB$を考える。

$\angle AOB$は鋭角、$OA=3,OB=t$とする。

また、点$A$から直線$OB$に下ろした垂線と

直線$OB$の交点を$C$とし、$OC=1$とする。

線分$AB$を$2:1$に内分する点を$P$、点$A$から

直線$OP$に下ろした垂線と直線$OB$との交点を

$R$とする。

(1)内積$\overrightarrow{OA}・\overrightarrow{OB}$を$t$を用いて表せ。

(2)線分$OR$の長さを$t$を用いて表せ。

(3)線分$OB$の中点を$M$とする。

点$R$が線分$MB$上にあるとき、

$t$のとりうる値の範囲を求めよ。

$2025$年大阪大学理系過去問題
この動画を見る 
PAGE TOP