【数ⅢC】複素数平面の基本③複素数平面の極形式の裏ワザ - 質問解決D.B.(データベース)

【数ⅢC】複素数平面の基本③複素数平面の極形式の裏ワザ

問題文全文(内容文):
次の複素数を極形式で表せ
(1)$\sqrt3+i$ (2)$-2+2i$
チャプター:

0:00 オープニング
0:04 極形式の考え方
2:26 極形式の裏ワザ
4:24 エンディング

単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数を極形式で表せ
(1)$\sqrt3+i$ (2)$-2+2i$
投稿日:2023.03.03

<関連動画>

ド・モアブルの定理を用いてオイラーの公式を導く

アイキャッチ画像
単元: #複素数平面#関数と極限#複素数平面#関数の極限#数学(高校生)#数C#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
ド・モアブルの定理を用いてオイラーの公式を導く方法を解説していきます.
この動画を見る 

福岡教育大 複素平面の基本

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ z=a+bi(a \gt 0,b \gt 0)z^2+\dfrac{1}{z^2}=1$を満たす.

(1)zを極形式で表せ$(0 \lt \theta \lt 2\pi)$

(2)$z^{100}+\dfrac{1}{z^{100}}$の値を求めよ.

(3)$z,z^2,z^{100}+\dfrac{1}{z^{100}}$の三点でできる三角形の面積を求めよ.

福岡教育大過去問
この動画を見る 

福田の数学〜名古屋大学2023年理系第1問〜4次方程式の解と共役な複素数の性質

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#名古屋大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数係数の4次方程式$x^4$$-px^3$$+qx^2$$-rx$$+s$=0 は相異なる複素数$\alpha$, $\bar{\alpha}$, $\beta$, $\bar{\beta}$を解に持ち、点1を中心とする半径1の円周上にあるとする。ただし、$\bar{\alpha}$, $\bar{\beta}$はそれぞれ $\alpha$, $\beta$と共役な複素数を表す。
(1)$\alpha$+$\bar{\alpha}$=$\alpha$$\bar{\alpha}$ を示せ。
(2)$t$=$\alpha$+$\bar{\alpha}$, $u$=$\beta$+$\bar{\beta}$とおく。p, q, r, sをそれぞれtとuで表せ。
(3)座標平面において、点(p, s)のとりうる範囲を図示せよ。

2023名古屋大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題075〜浜松医科大学2017年度医学部第1問〜複素数の実部と虚部

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)|z| ≦ |z-($\sqrt 3 + i$)|, |z-$\bar{z}$| ≦ 1および|z-$2i$| ≦ 2を同時にみたす複素数zに対応する点の領域を複素数平面上に図示せよ。
(2)(1)で得られた領域内の点に対応する複素数のうち、実部が最大となるものを$\alpha$、実部と虚部の和が最大となるものを$\beta$とするとき、$\alpha$と$\beta$を求めよ。
(3)次の式で定義される$w_n$の実部を$R_n$とするとき、無限級数$\displaystyle\sum_{n=1}^{\infty}R_n$の和を求めよ。
$w_n=\displaystyle\frac{\{1+(2-\sqrt 3)i\}(\sqrt 3+i)^{3(n-1)}}{2^{4(n-1)}}$ $(n=1,2,3,\dots)$

2017浜松医科大学医学部過去問
この動画を見る 

北里大学2021年医学部第1問(2)。複素数平面でド・モアブルの定理を利用した偏角、絶対値の計算や正三角形の残りの頂点を求める

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(2)iを虚数単位とし、$z_1=\frac{(\sqrt3+i)^{17}}{(1+i)^{19}(1-\sqrt3i)^7}, z_2=-1+i$とする。
$z_1$の偏角$\theta$のうち、$\\0 \leqq \theta \lt 2\pi$を満たすものは$\theta=\boxed{オ}$であり、$|z_1|=\boxed{カ}$である。
複素数平面上で$z_1,z_2$を表す点をそれぞれA,Bとする。このとき線分ABを
1辺とする正三角形ABCの、頂点Cを表す複素数の実部は0または$\boxed{キ}$である。
a,bを正の整数とし、複素数$\frac{(\sqrt3+i)^7}{(1+i)^a(1-\sqrt3i)^b}$の偏角の一つが$\frac{\pi}{12}$であるとき、
a+bの最小値は$\boxed{ク}$である。

2021北里大学医学部過去問
この動画を見る 
PAGE TOP