数学「大学入試良問集」【18−6 平均値の定理と不等式の証明】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【18−6 平均値の定理と不等式の証明】を宇宙一わかりやすく

問題文全文(内容文):
以下の各問いに答えよ。
(1)
関数$f(x)=x\ log\ x$を微分せよ。

(2)
次の等式を満たす$c$が$x \lt c \lt x+1$の範囲に存在することを示せ。
$(x+1)log(x+1)-x\ log\ x=1+log\ c$

(3)
$x \gt 0$のとき、次の不等式が成り立つことを示せ。
ただし$e$は自然対数の底である。
$\left[ 1+\dfrac{ 1 }{ x } \right]^x \lt e$
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#姫路工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の各問いに答えよ。
(1)
関数$f(x)=x\ log\ x$を微分せよ。

(2)
次の等式を満たす$c$が$x \lt c \lt x+1$の範囲に存在することを示せ。
$(x+1)log(x+1)-x\ log\ x=1+log\ c$

(3)
$x \gt 0$のとき、次の不等式が成り立つことを示せ。
ただし$e$は自然対数の底である。
$\left[ 1+\dfrac{ 1 }{ x } \right]^x \lt e$
投稿日:2021.07.06

<関連動画>

【数Ⅲ】微分法・積分法:<公式忘れても大丈夫!>三角関数の微積分 ~ぐるぐる回そう~

アイキャッチ画像
単元: #微分とその応用#積分とその応用#色々な関数の導関数#不定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形の重心における、頂点→重心:重心→中点の線分の比を導出する動画になります。
この動画を見る 

福田のわかった数学〜高校3年生理系065〜微分(10)定義に従った微分(2)log xの微分

アイキャッチ画像
単元: #微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
定義に従って$f(x)=\log x$を微分せよ.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題056〜神戸大学2017年度文系第1問〜3次関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ tを正の実数とする。$f(x)=x^3+3x^2-3(t^2-1)x+2t^3-3t^2+1$とおく。
以下の問いに答えよ。
(1)2t^3-3t^2+1 を因数分解せよ。
(2)$f(x)$が極小値0をもつことを示せ。
(3)$-1 \leqq x \leqq 2$における$f(x)$の最小値$m$と最大値$M$をtの式で表せ。

2017神戸大学文系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系071〜接線(3)共通接線(1)

アイキャッチ画像
単元: #微分とその応用#微分法#色々な関数の導関数#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 接線(3) 共通接線(1)
2曲線$\ y=e^xとy=\sqrt{x+a}$がともに点Pを通り、点Pにおいて共通の
接線をもつとき、aの値と接線の方程式を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系066〜微分(11)定義に従った微分(3)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(11) 定義に従って(3)
$f'(a)$が存在するとき、
$\lim_{x \to a}\frac{a^2f(x)-x^2f(a)}{x-a}$
を$a,f(a),f'(a)$で表せ。
この動画を見る 
PAGE TOP