高専数学 微積I #210(1) 曲線の長さ - 質問解決D.B.(データベース)

高専数学 微積I #210(1) 曲線の長さ

問題文全文(内容文):
曲線$y=(x-1)^{\frac{3}{2}} \ (1\leq x \leq 6)$
の長さ$\ell$を求めよ.
単元: #数Ⅱ#平面上の曲線#微分法と積分法#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
曲線$y=(x-1)^{\frac{3}{2}} \ (1\leq x \leq 6)$
の長さ$\ell$を求めよ.
投稿日:2021.06.09

<関連動画>

複素関数論⑩ 高専数学 複素積分*ex2, *2

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$C_{\alpha}:Z=\alpha+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C\alpha}^{} \ \dfrac{1}{(Z-\alpha)^n}\ \alpha_Z$

(2) $C_{\alpha}:Z=1+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C}^{} \ \dfrac{2}{Z-1}\ \alpha_Z$
この動画を見る 

兵庫県教員採用試験(数学:12番 極限値)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{12}$
$\displaystyle \int_{0}^{\infty} \ x\ e^{-x} dx$を求めよ.
*$\displaystyle \lim_{t\to\infty}\dfrac{t}{e^t}=0$は利用してよい.
この動画を見る 

北海道大 式の最大値 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
北海道大学過去問題
x,y実数
$x^2+y^2=1$を満たす
$\sqrt3x^2+2xy-\sqrt3y^2$の最大値と、そのときのx,yの値
この動画を見る 

福田の数学〜東北大学2025理系第5問〜球面上の点と軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$S$を$xyz$空間内の原点$O(0,0,0)$を中心とする

半径$1$の球面とする。

また、点$P(a,b,c)$を

点$(0,0,1)$とは異なる球面$S$上の点とする。

点$P$と点$N$を通る直線$\ell$と$xy$平面との

交点を$Q$とおく。

このとき、以下の問いに答えよ。

(1)点$Q$の座標を$a,b,c$を用いて表せ。

(2)$xy$平面上の点$(p,q,0)$と点$N$を通る直線を

$m$とする。

直線$m$と球面$S$の交点のうち、

点$N$以外の交点の座標を$p,q$を用いて表せ。

(3)点$\left(0,0,\dfrac{1}{2}\right)$を通り、

ベクトル$(3,4,5)$に直交する

平面$\alpha$を考える。

点$P$が平面$\alpha$ト球面$S$との交わりを動くとき、

点$Q$は$xy$平面上の円周上を動くことを示せ。

$2025$年東北大学理系過去問題
この動画を見る 

千葉大 三次関数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
$f(x)=x^3,g(x)=ax^2+bx+c \quad (a \neq 0) $
f(x)とg(x)のグラフが点$(\frac{1}{2},\frac{1}{8})$で共通の接線をもつ。
(1)b,cをaを用いて表せ。
(2)f(x)-g(x)の$0 \leqq x \leqq 1$における最小値をaを用いて表せ。
この動画を見る 
PAGE TOP