問題文全文(内容文):
数Ⅲ(平均値の定理➁)
Q.次の不等式を平均値の定理を用いて証明せよ
①$a \gt 0$のとき$\frac{1}{a+1}\lt \log(a+1)-\log a \lt \frac{1}{a}$
➁$0\lt a \lt b$のとき$1-\frac{a}{b}\lt \log\frac{b}{a}\lt \frac{b}{a}-1$
数Ⅲ(平均値の定理➁)
Q.次の不等式を平均値の定理を用いて証明せよ
①$a \gt 0$のとき$\frac{1}{a+1}\lt \log(a+1)-\log a \lt \frac{1}{a}$
➁$0\lt a \lt b$のとき$1-\frac{a}{b}\lt \log\frac{b}{a}\lt \frac{b}{a}-1$
単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(平均値の定理➁)
Q.次の不等式を平均値の定理を用いて証明せよ
①$a \gt 0$のとき$\frac{1}{a+1}\lt \log(a+1)-\log a \lt \frac{1}{a}$
➁$0\lt a \lt b$のとき$1-\frac{a}{b}\lt \log\frac{b}{a}\lt \frac{b}{a}-1$
数Ⅲ(平均値の定理➁)
Q.次の不等式を平均値の定理を用いて証明せよ
①$a \gt 0$のとき$\frac{1}{a+1}\lt \log(a+1)-\log a \lt \frac{1}{a}$
➁$0\lt a \lt b$のとき$1-\frac{a}{b}\lt \log\frac{b}{a}\lt \frac{b}{a}-1$
投稿日:2018.09.07





