福田の数学〜慶應義塾大学看護医療学部2025第2問(2)〜円のベクトル方程式 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学看護医療学部2025第2問(2)〜円のベクトル方程式

問題文全文(内容文):

$\boxed{2}$

(2)平面上の異なる$2$点$A(\overrightarrow{a}),B(\overrightarrow{b})$に対して、

ベクトル方程式

$2 \vert \overrightarrow{p}-\overrightarrow{a}=\vert \overrightarrow{p}-\overrightarrow{b}\vert$

を満たす点$P(\overrightarrow{p})$全体の集合は円となる。

この円の中心の位置ベクトルは$\boxed{サ}$で半径は

$\boxed{シ}$となる。

ただし、$\boxed{シ}$では根号を用いない表記とすること。

$2025$年慶應義塾大学看護医療学部過去問題
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

(2)平面上の異なる$2$点$A(\overrightarrow{a}),B(\overrightarrow{b})$に対して、

ベクトル方程式

$2 \vert \overrightarrow{p}-\overrightarrow{a}=\vert \overrightarrow{p}-\overrightarrow{b}\vert$

を満たす点$P(\overrightarrow{p})$全体の集合は円となる。

この円の中心の位置ベクトルは$\boxed{サ}$で半径は

$\boxed{シ}$となる。

ただし、$\boxed{シ}$では根号を用いない表記とすること。

$2025$年慶應義塾大学看護医療学部過去問題
投稿日:2025.04.30

<関連動画>

福田の数学〜九州大学2023年文系第3問〜ベクトルの平行条件と内積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。以下の問いに答えよ。
(1)$\overrightarrow{m}$と$\overrightarrow{n}$が平行であるための必要十分条件はD=0であることを示せ。
以下、D≠0とする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}$・$\overrightarrow{v}$=$\overrightarrow{n}$・$\overrightarrow{w}$=1, $\overrightarrow{m}$・$\overrightarrow{w}$=$\overrightarrow{n}$・$\overrightarrow{v}$=0
を満たすものを求めよ。
(3)座標平面上のベクトル$\overrightarrow{q}$に対して
$r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$
を満たす実数$r$と$s$を$\overrightarrow{q}$, $\overrightarrow{v}$, $\overrightarrow{w}$を用いて表せ。

2023九州大学文系過去問
この動画を見る 

【数C】ベクトルの基本⑮直線の方程式を求める

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(3,5),方向ベクトルd=(1,2)のとき直線の方程式を求めよ。
A(1,3),B(2,4)のとき2点を通る直線の方程式を求めよ。
A(3,2),法線ベクトルd=(4,5)のとき直線の方程式を求めよ。
この動画を見る 

【高校数学】数Ⅲ-45 極座標と極方程式②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極座標の点$A,B$の直交座標を求めよ。

①$A\left(3,\dfrac{\pi}{6}\right)$

②$B\left(2,-\dfrac{5}{6}\pi\right)$

次の直交座標の点$C,D$の極座標$(r,\theta)$を求めよ。
ただし、$0\leqq \theta \leqq 2\pi$とする。

③$C(0,-2)$

④$D(\sqrt3,-3)$
この動画を見る 

福田の数学〜筑波大学2022年理系第3問〜平行四辺形の中の平行四辺形

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$0 \lt t \lt 1$とする。平行四辺形ABCDにおいて、線分AB,BC,CD,DAを
$t:1-t$に内分する点をそれぞれ$A_1,B_1,C_1,D_1$とする。さらに$A_2,B_2,C_2,D_2$および$A_3,B_3,C_3,D_3$を次の条件を満たすように定める。
$(\ 条件\ )k=1,2$について、点$A_{k+1},B_{k+1},C_{k+1},D_{k+1}$はそれぞれ線分$A_kB_k$,
$B_kC_k,C_kD_k,D_kA_k$を$t:1-t$に内分する。
$\overrightarrow{ AB }=\overrightarrow{ a }, \overrightarrow{ AD }=\overrightarrow{ b }$とするとき、以下の問いに答えよ。
(1)$\overrightarrow{ A_1B_1 }=p\overrightarrow{ a }+q\overrightarrow{ b }, \overrightarrow{ A_1D_1 }=x\ \overrightarrow{ a }+y\ \overrightarrow{ b }$ を満たす実数p,q,x,yを
tを用いて表せ。
(2)四角形$A_1B_1C_1D_1$は平行四辺形であることを示せ。
(3)$\overrightarrow{ AD }$と$\overrightarrow{ A_3B_3 }$が平行となるようなtの値を求めよ。

2022筑波大学理系過去問
この動画を見る 

【高校数学】 数B-20 位置ベクトル①

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
2点$A(\vec{ a })$、$B(\vec{ a })$を結ぶ線分ABを
m:nに内分する点$P(\vec{ p })$と、m:nに外分する点$Q(\vec{ q })$は

$\overrightarrow{ p }=$①____________

$\overrightarrow{ q }=$②____________

2点A、Bを結ぶ線分ABについて、次の点の位置ベクトルを$\vec{ a }$、$\vec{ b }$で表そう。

③2:3に内分する点

⑤3:4に外分する点

④4:1に外分する点

⑥中点
この動画を見る 
PAGE TOP