福田の数学〜慶應義塾大学看護医療学部2025第2問(2)〜円のベクトル方程式 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学看護医療学部2025第2問(2)〜円のベクトル方程式

問題文全文(内容文):

$\boxed{2}$

(2)平面上の異なる$2$点$A(\overrightarrow{a}),B(\overrightarrow{b})$に対して、

ベクトル方程式

$2 \vert \overrightarrow{p}-\overrightarrow{a}=\vert \overrightarrow{p}-\overrightarrow{b}\vert$

を満たす点$P(\overrightarrow{p})$全体の集合は円となる。

この円の中心の位置ベクトルは$\boxed{サ}$で半径は

$\boxed{シ}$となる。

ただし、$\boxed{シ}$では根号を用いない表記とすること。

$2025$年慶應義塾大学看護医療学部過去問題
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

(2)平面上の異なる$2$点$A(\overrightarrow{a}),B(\overrightarrow{b})$に対して、

ベクトル方程式

$2 \vert \overrightarrow{p}-\overrightarrow{a}=\vert \overrightarrow{p}-\overrightarrow{b}\vert$

を満たす点$P(\overrightarrow{p})$全体の集合は円となる。

この円の中心の位置ベクトルは$\boxed{サ}$で半径は

$\boxed{シ}$となる。

ただし、$\boxed{シ}$では根号を用いない表記とすること。

$2025$年慶應義塾大学看護医療学部過去問題
投稿日:2025.04.30

<関連動画>

【数B】ベクトル:正射影ベクトルの仕組みと使い方

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
正射影ベクトルについて解説します!
この動画を見る 

【数C】ベクトルの基本⑦内積を求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a=√3,b=5,a-b=√5のとき、内積a・bを求めよ
この動画を見る 

慶應(医)空間 直線&平面の方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#三角関数#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#慶應義塾大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
直線 $l:6-x=\frac{y+5}{2}=2-z$と
平面$α:z+y-z-1=0$
(1)lとαの交点の座標
(2)lを含み平面αに垂直な平面πの方程式
(3)lと、平面αとπの交線のなす角をθ(0°$\leqq$θ$\leqq$90°)
cosθの値
この動画を見る 

【高校数学】 数B-33 平面上の点の存在位置②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△OABに対し、$\overrightarrow{ OP }=s\overrightarrow{ OA }+t\overrightarrow{ OB } $とする。実数S,tが次の条件を満たしながら動くとき、 点Pの存在範囲を図示しよう。

①$s+t \leqq \displaystyle \frac{1}{2},s \geqq 0,t \geqq 0$

②$3s+2t \leqq 3,S \geqq 0,t \geqq 0$
この動画を見る 

【数C】ベクトルの基本⑪平面ベクトルのときの三角形の面積の計算

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(-2,1),B(3,0),C(2,4)が与えられたとき、三角形ABCの面積を求めよ
この動画を見る 
PAGE TOP