福田の数学〜慶應義塾大学2021年環境情報学部第1問〜三角形の内部にある外接している5つの円 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年環境情報学部第1問〜三角形の内部にある外接している5つの円

問題文全文(内容文):
${\Large\boxed{1}}$ 
図(※動画参照)のように三角形$\rm ABC$の内部に半径$1$の円が5つ含まれている。4つの円は辺$\rm BC$に接しながら横一列に互いに接しながら並び、左端の円は辺$\rm AB$に接し、右端の円は辺$\rm AC$に接している。また、もう一つの円は、辺$\rm AB$と辺$\rm AC$に接し、4つの円の右側の2つの円に接している。このとき
$\textrm{AB}=\dfrac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}\textrm{BC}$ 
$\rm AC=\dfrac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC$
$\rm BC=\dfrac{1}{\boxed{\ \ テト\ \ }}(\boxed{\ \ ケコ\ \ }+$$\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+$$\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }})$   $(\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })$
である。

2021慶應義塾大学環境情報学部過去問
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#方べきの定理と2つの円の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
図(※動画参照)のように三角形$\rm ABC$の内部に半径$1$の円が5つ含まれている。4つの円は辺$\rm BC$に接しながら横一列に互いに接しながら並び、左端の円は辺$\rm AB$に接し、右端の円は辺$\rm AC$に接している。また、もう一つの円は、辺$\rm AB$と辺$\rm AC$に接し、4つの円の右側の2つの円に接している。このとき
$\textrm{AB}=\dfrac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}\textrm{BC}$ 
$\rm AC=\dfrac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC$
$\rm BC=\dfrac{1}{\boxed{\ \ テト\ \ }}(\boxed{\ \ ケコ\ \ }+$$\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+$$\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }})$   $(\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })$
である。

2021慶應義塾大学環境情報学部過去問
投稿日:2021.06.29

<関連動画>

東京医科歯科大 整式の大小比較

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は異なる整数
大小比較せよ

(1)
$a^3+b^3,a^2b+ab^2$

(2)
$(a+b+c)(a^2+b^2+c^2)$
$(a+b+c)(ab+bc+ca)$
$3(a^3+b^3+c^3),9abc$


出典:2010年東京医科歯科大学 過去問
この動画を見る 

【高校数学】  数Ⅰ-48  2次関数の最大・最小⑦

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$2x+y=1$のとき、$x^2+y^2$の最小値を求めよう。
②$x+2y=0$のとき、$xy$の最大値を求めよう。
この動画を見る 

【知らなきゃ損!!】因数分解の応用例。これすぐ解けますか?【高校数学】

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
以下を因数分解してください
$(2x-1)^2-(2x-1)-2$
この動画を見る 

成城大 ド・モアブル証明 6倍角の公式?

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#式と証明#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\cos\theta+i\sin\theta$

(1)
$n$整数
$z^n=\cos n \theta + i \sin n \theta$を示せ

(2)
$z+\displaystyle \frac{1}{z}$を$\cos \theta$を用いて表せ

(3)
$\cos^6\theta$を$\cos2\theta,\cos4\theta,\cos6\theta$を用いて表せ

出典:2005年成城大学 過去問
この動画を見る 

【次数が高くても焦るな】対称式 入試問題【2017年昭和大学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a+b=1,a^2+b^2=3$のとき、$a^7+b^7$の値を求めよ。

2017昭和大過去問
この動画を見る 
PAGE TOP