福田の数学〜立教大学2025理学部第2問〜三角関数の最大最小の定番 - 質問解決D.B.(データベース)

福田の数学〜立教大学2025理学部第2問〜三角関数の最大最小の定番

問題文全文(内容文):

$\boxed{2}$

実数$x$に対し、関数$f(x)$を

$f(x)=\sin^3x+\cos^3x+4sin x \cos x$

により定める。

また、$t=\sin x+\cos x$とおく。次の問いに答えよ。

(1)$\sin x \cos x$を$t$を用いて表せ。

(2)$f(x)$を$t$を用いて表せ。

(3)$x$がすべてに実数を動くとき、

$t$のとりうる値の範囲を求めよ。

(4)$x$がすべてに実数を動くとき、

$f(x)$の最大値と最小値をそれぞれ求めよ。

$2025$年立教大学理学部過去問題
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

実数$x$に対し、関数$f(x)$を

$f(x)=\sin^3x+\cos^3x+4sin x \cos x$

により定める。

また、$t=\sin x+\cos x$とおく。次の問いに答えよ。

(1)$\sin x \cos x$を$t$を用いて表せ。

(2)$f(x)$を$t$を用いて表せ。

(3)$x$がすべてに実数を動くとき、

$t$のとりうる値の範囲を求めよ。

(4)$x$がすべてに実数を動くとき、

$f(x)$の最大値と最小値をそれぞれ求めよ。

$2025$年立教大学理学部過去問題
投稿日:2025.06.08

<関連動画>

3次不等式を解け

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数
指導講師: 数学を数楽に
この動画を見る 

高次方程式を解く!その1(3次方程式4次方程式)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
高次方程式を解け。
(1)$x^3=1$
(2)$x^4=4$
(3)$x^4-3x^2-10=0$
この動画を見る 

05高知県教員採用試験(数学:3-(2) 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}-(2)$
$z=1+\sqrt3 i$のとき,
$1+z+z^2+z^3+z^4+z^5$の値を求めよ.
この動画を見る 

#電気通信大学2024#極限_72

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \displaystyle \sum_{k=1}^{n} \dfrac{n}{n^2+3k^2}$を解け.

電気通信大学過去問題
この動画を見る 

高専数学 微積I #248(2) 極座標表示曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq \theta \leqq 4\pi$である.
極座標による曲線$r=\sin^4\dfrac{\theta}{4}$
の長さを求めよ.
この動画を見る 
PAGE TOP