【超良問】大学入試問題#337 弘前大学(2010) #定積分 #ウォリス積分 - 質問解決D.B.(データベース)

【超良問】大学入試問題#337 弘前大学(2010) #定積分 #ウォリス積分

問題文全文(内容文):
$\displaystyle \int_{0}^{1}\{x(1-x)\}^{\frac{3}{2}}dx$

出典:2010年弘前大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\{x(1-x)\}^{\frac{3}{2}}dx$

出典:2010年弘前大学 入試問題
投稿日:2022.10.16

<関連動画>

福田の数学〜上智大学2021年TEAP利用理系第1問(3)〜非回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (3)不等式
$1 \leqq z \leqq 4,\ \frac{x^2}{z^2}+4z^4y^2 \leqq 1$
が表す座標空間内の領域の体積は$\boxed{\ \ え\ \ }$である。

$\boxed{\ \ え\ \ }$の選択肢:
$(\textrm{a})\frac{3\pi}{2}  (\textrm{b})3\pi  (\textrm{c})\frac{3\pi^2}{2}  (\textrm{d})3\pi^2$
$(\textrm{e})\pi\log 2  (\textrm{f})\frac{\pi\log 2}{2}  (\textrm{g})3\pi^2\log 2$  

2021上智大学理系過去問
この動画を見る 

福田の数学〜東京医科歯科大学2024医学部第3問〜定積分の性質と置換積分の計算の解

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{3} f(x)$を連続関数とするとき、次の各問いに答えよ。
(1)次の等式を示せ。$\displaystyle \int_{0}^{ \frac{\pi}{2} } f(\sin 2x)\sin x dx=\displaystyle \int_{0}^{ \frac{\pi}{2} } f(\sin 2x)\cos x dx$
(2)次の等式を示せ。$\displaystyle \int_{0}^{ \frac{\pi}{2} } f(\sin 2x)(\sin x+\cos x) dx=\displaystyle \int_{-1}^{1} f(1-t^2)dt$
(3)次の定積分の値を求めよ。$\displaystyle \int_{0}^{ \frac{\pi}{2} } \frac{\sin x}{1+\sqrt{\sin 2x}} dx$
この動画を見る 

大学入試問題#536「計算力大事」 福島県立医科大学(2021) #微積の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ますただ
問題文全文(内容文):
すべての実数$x$に対して$f(x)=x+\displaystyle \int_{0}^{1} 2^{2t+x}f(t)\ dt$を満たすとき$f(0)$を求めよ

出典:2021年福島県立医科大学 入試問題
この動画を見る 

#51 大学入試問題 新潟大学(2020) 定積分【King propertyっぽいけど・・・】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sin\ x+\cos\ x}{1+\sin\ x\ \cos\ x}\ dx$を計算せよ。

出典:2020年新潟大学 入試問題
この動画を見る 

大学入試問題#454「落とすと落ちる問題①」 横浜国立大学 後期 2003 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} \displaystyle \frac{dx}{\sin\ x+\sqrt{ 3 }\ \cos\ x}$

出典:2003年横浜国立大学 入試問題
この動画を見る 
PAGE TOP