【数A】確率:(理系)東京大学1971年 ジャンケンの確率 - 質問解決D.B.(データベース)

【数A】確率:(理系)東京大学1971年 ジャンケンの確率

問題文全文(内容文):
3人でジャンケンをして勝者をきめることにする。たとえば,1人が"紙"を出し, 他の2人が”石"を出せば,ただ1回でちょうど1人の勝者がきまることになる。 
3 人でジャンケンをして,負けた人は次の回に参加しないことにして,ちょうど1 人の勝者がきまるまで,ジャンケンをくり返すことにする。 
このとき,n回目 に,はじめてちょうど1人の勝者がきまる確率を求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:20 人数の変化の整理
1:16 問題解説
3:07 別解:漸化式の利用
5:22 名言

単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3人でジャンケンをして勝者をきめることにする。たとえば,1人が"紙"を出し, 他の2人が”石"を出せば,ただ1回でちょうど1人の勝者がきまることになる。 
3 人でジャンケンをして,負けた人は次の回に参加しないことにして,ちょうど1 人の勝者がきまるまで,ジャンケンをくり返すことにする。 
このとき,n回目 に,はじめてちょうど1人の勝者がきまる確率を求めよう。
投稿日:2021.05.21

<関連動画>

2022近畿大(医)場合の数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$人を区別のある 部屋に入れます。
0人部屋はダメ

(1)2部屋 (2)3部屋 (3)4部屋

何通りか求めよ。

2022年 近畿大学医学部 過去問
この動画を見る 

東京海洋大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京海洋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
8チームで下図のような トーナメント方式で大会 を行う。
※図は動画内参照

AvsBと他6vs他6はどちらも勝つ確率$\frac{1}{2}$。
Avs他6,Bvs他6はA,Bの勝つ確率$\frac{2}{3}$。

Aの優勝する確率は?
①Aをブロック1、Bをブロック2 に配置した場合

②8チームを無作為 に配置した場合

東京海洋大過去問
この動画を見る 

福田の数学〜反復試行の確率問題の練習に最適な問題〜慶應義塾大学2023年商学部第4問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
太郎は 15 個の球を、花子は幻個の球を持っている。による球のやり取りを 2 人の間で繰り返す。こから始めて、次の手順による球のやり取りを 2 人の間で繰り返す。
【1】 2 個のさいころを同時に投げる。
【 2 】① 2 個とも奇数の目が出たら、太郎が花子に 1 個の球を渡す。
   ② 2 個とも偶数の目が出たら、太郎が花子に 2 個の球を渡す。
   ③奇数の目と偶数の目 1 個ずつ出たら、花子が太郎に 3 個の球を渡す。
この手順【1】,【 2 】によるやり取りを、 7 回繰り返す。その結果、太郎と花子の持つ球の個数について、以下の間いに答えなさい。
( 1 )太郎と花子が同数の球を持っている確率は$\dfrac{\fbox{アイウ}}{\fbox{エオカキ}}$である。
( 2 )持っている球の数が、太郎と花子の 2 人とも最初と変わらない確率は$\dfrac{\fbox{クケコ}}{\fbox{サシスセ}}$である。
( 3 )太郎の持っている球の数が、花子の持っている球の数の半分である確率は$\dfrac{\fbox{ソタチ}}{\fbox{ツテトナ}}$である。

2023慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜中央大学2023年経済学部第2問〜確率漸化式

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 正の整数$a$を入力すると0以上$a$以下の整数のどれか1つを等しい確率で出力する装置がある。この装置に$a$=10を入力する操作を$n$回繰り返す。出力された$n$個の整数の和が偶数となる確率を$p_n$、奇数となる確率を$q_n$とするとき、以下の問いに答えよ。
(1)$p_1$, $q_1$を求めよ。
(2)$p_{n+1}$を$p_n$, $q_n$を用いて表せ。
(3)$p_n$を$n$の式で表せ。
この動画を見る 

数学「大学入試良問集」【4−5 整数の個数】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#姫路工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
5桁の自然数$n$の万の位、千の位、百の位、十の位、一の位の数字をそれぞれ$a,b,c,d,e$とする。
次の各条件について、それを満たす$n$は、何個あるか。
(1)$a,b,c,d,e$が互いに異なる。
(2)$a \gt b$
(3)$a \lt b \lt c \lt d \lt e$
この動画を見る 
PAGE TOP