大学入試問題#514「困ったらz=x+yi?」 札幌医科大学(2022) #複素数 - 質問解決D.B.(データベース)

大学入試問題#514「困ったらz=x+yi?」 札幌医科大学(2022) #複素数

問題文全文(内容文):
$|z+3i|=2|z|$
$|z+4i|=|z|$
を満たす複素数$z$をすべて求めよ

出典:2022年札幌医科大学 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#札幌医科大学
指導講師: ますただ
問題文全文(内容文):
$|z+3i|=2|z|$
$|z+4i|=|z|$
を満たす複素数$z$をすべて求めよ

出典:2022年札幌医科大学 入試問題
投稿日:2023.04.23

<関連動画>

整数問題が苦手な人は要チェック!絶対に取りたい整数問題【関西医科大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
( 1) (a + 1)(a - 1)(b + 1)(b - 1) - 4ab を因数分解せよ。

( 2) (a + 1)(a - 1)(b + 1)(b - 1) = 4ab を満たす整数a,bの組で、 a < b の条件を満たすものは
?組あり、そのなかでa,bのどちらも正の整数となる組(a,b) は ?である 。

(2023年 関西医科大学)
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(5)切り取られる弦の長さと中点(応用1)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2-4x+2y-4=0$ $\cdots$①が直線$x+2y+k=0$ $\cdots$②
から切り取る弦の長さが4であるとき、定数$k$の値を求めよ。

${\Large\boxed{2}}$ 直線$\ell:y=2x+a$ が放物線$C:y=x^2$ によって切り取られる弦
の長さが10となるように定数$a$の値を求めよ。
この動画を見る 

福田の数学〜中央大学2021年理工学部第3問〜剰余類による分類

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$自然数$a$を3で割った余りを$r(r=0,1,2)$とする.以下の問いに答えよ.
(1)以下を求めよ.
(ア)$r=0$のとき,$a^3+4$を3で割った余り
(イ)$r=1$のとき,$a^3+4$を3で割った余り
(ウ)$r=2$のとき,$a^3+4$を3で割った余り

(2)3つの自然数$a,a^3+4,a^5+8$のうちいずれか1つは3の倍数であることを示せ.

(3)3つの自然数$a,a^3+4,a^5+8$が同時に素数となる$a$をすべて求めよ.

2021中央大理工学部過去問
この動画を見る 

素数に関する問題 明治学院

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
m,nを1ケタの自然数とする。
(m+n)(n-2)が素数となる(m,n)の組はいくつあるか。

明治学院高等学校
この動画を見る 

2022九州大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
kは実数であり,整式f(x)を$ f(x)=x^4+6x^3-kx^2+2kx-64 $で定める.
f(x)=0が虚数解をもつとき,
(1)f(x)はx-2で割り切れることを示せ.
(2)f(x)=0は負の実数解をもつことを示せ.
(3)f(x)=0のすべての実数解が整数で,すべての虚数解の実部と虚部が
ともに整数である.kの値を求めよ.

2022九州大過去問
この動画を見る 
PAGE TOP